Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis.
C G Fanelli, … , P Brunetti, G B Bolli
C G Fanelli, … , P Brunetti, G B Bolli
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):2005-2013. https://doi.org/10.1172/JCI115809.
View: Text | PDF
Research Article

Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation in humans by stimulating lipolysis.

  • Text
  • PDF
Abstract

Three studies were performed on nine normal volunteers to assess whether catecholamine-mediated lipolysis contributes to counterregulation to hypoglycemia. In these three studies, insulin was intravenously infused for 8 h (0.30 mU.kg-1.min-1 from 0 to 180 min, and 0.40 mU.kg-1.min-1 until 480 min). In study I (control study), only insulin was infused; in study II (direct + indirect effects of catecholamines), propranolol and phentolamine were superimposed to insulin and exogenous glucose was infused to reproduce the same plasma glucose (PG) concentration of study I. Study III (indirect effect of catecholamines) was the same as study II, except heparin (0.2 U.kg-1.min-1 after 80 min), 10% Intralipid (1 ml.min-1 after 160 min) and variable glucose to match PG of study II, were also infused. Glucose production (HGO), glucose utilization (Rd) [3-3H]glucose, and glucose oxidation and lipid oxidation (LO) (indirect calorimetry) were determined. In all three studies, PG decreased from approximately 4.8 to approximately 2.9 mmol/liter (P = NS between studies), and plasma glycerol and FFA decreased to a nadir at 120 min. Afterwards, in study I plasma glycerol and FFA increased by approximately 75% at 480 min, but in study II they remained approximately 40% lower than in study I, whereas in study III they rebounded as in study I (P = NS). In study II, LO was lower than in study I (1.69 +/- 0.13 vs. 3.53 +/- 0.19 mumol.kg-1.min-1, P less than 0.05); HGO was also lower between 60 and 480 min (7.48 +/- 0.57 vs. 11.6 +/- 0.35 mumol.kg-1.min-1, P less than 0.05), whereas Rd was greater between 210 and 480 min (19 +/- 0.38 vs. 11.4 +/- 0.34 mumol.kg-1.min-1, respectively, P less than 0.05). In study III, LO increased to the values of study I; between 4 and 8 h, HGO increased by approximately 2.5 mumol.kg-1.min-1, and Rd decreased by approximately 7 mumol.kg-1.min-1 vs. study II. We conclude that, in a late phase of hypoglycemia, the indirect effects of catecholamines (lipolysis mediated) account for at least approximately 50% of the adrenergic contribution to increased HGO, and approximately 85% of suppressed Rd.

Authors

C G Fanelli, P De Feo, F Porcellati, G Perriello, E Torlone, F Santeusanio, P Brunetti, G B Bolli

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts