Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans.
H U Marschall, … , S Matern, J Sjövall
H U Marschall, … , S Matern, J Sjövall
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1981-1987. https://doi.org/10.1172/JCI115806.
View: Text | PDF
Research Article

Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans.

  • Text
  • PDF
Abstract

The aim of this study was to define whether N-acetylglucosaminidation is a selective conjugation pathway of structurally related bile acids in humans. The following bile acids released enzymatically from N-acetylglucosaminides were identified: 3 alpha,7 beta-dihydroxy-5 beta-cholanoic (ursodeoxycholic), 3 beta, 7 beta-dihydroxy-5 beta-cholanoic (isoursodeoxycholic), 3 beta,7 beta-dihydroxy-5 alpha-cholanoic (alloisoursodeoxycholic), 3 beta,7 beta-dihydroxy-5-cholenoic, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic, and 3 alpha,6 alpha,7 beta-trihydroxy-5 beta-cholanoic acids. The selectivity of conjugation was studied by administration of 0.5 g ursodeoxycholic (UDCA) or hyodeoxycholic (HDCA) acids, labeled with 13C, to patients with extrahepatic cholestasis, and of 0.5 g of 13C-labeled chenodeoxycholic acid (CDCA) to patients with extra- or intrahepatic cholestasis. After administration of [24-13C]-CDCA, labeled glucosides, and the glucuronide of CDCA were excreted in similar amounts. Labeled N-acetylglucosaminides of UDCA and isoUDCA were also formed. When [24-13C]-UDCA was given, 13C-label was detected in the N-acetylglucosaminide, the glucosides, and the glucuronide of UDCA, and in the N-acetylglucosaminide of isoUDCA. In the patient studied, 32% of the total UDCA excreted in urine was conjugated with N-acetylglucosamine. In contrast, 96% of the excreted amount of [24-13C]HDCA was glucuronidated, and 13C-labeled glucosides but no N-acetylglucosaminide were detected. The selectivity of N-acetylglucosaminidation towards bile acids containing a 7 beta-hydroxyl group was confirmed in vitro using human liver and kidney microsomes and uridine diphosphate glucose (UDP)-N-acetylglucosamine. These studies show that N-acetylglucosaminidation is a selective conjugation pathway for 7 beta-hydroxylated bile acids.

Authors

H U Marschall, H Matern, H Wietholtz, B Egestad, S Matern, J Sjövall

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts