Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Retroviral gene transfer to primitive normal and leukemic hematopoietic cells using clinically applicable procedures.
P F Hughes, … , C J Eaves, R K Humphries
P F Hughes, … , C J Eaves, R K Humphries
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1817-1824. https://doi.org/10.1172/JCI115786.
View: Text | PDF
Research Article

Retroviral gene transfer to primitive normal and leukemic hematopoietic cells using clinically applicable procedures.

  • Text
  • PDF
Abstract

Clinical uses of gene transfer to bone marrow transplants require the establishment of a reproducible method for infecting large numbers of very primitive hematopoietic cells at high efficiency using cell-free retrovirus-containing media. In this study we report the results of experiments with preparations of a high-titer (2-5 x 10(7)/ml) helper-free recombinant neo(r) retrovirus that indicate this goal can now be achieved based on measurements of gene transfer efficiencies to cells referred to as long-term culture initiating cells (LTC-IC) because they give rise to clonogenic cells after greater than or equal to 5 wk in long-term culture (LTC). Intermittent, repeated exposure of normal human marrow mononuclear cells to virus-containing supernatant over a 3-d period of cell maintenance on an IL-3/granulocyte colony-stimulating factor (G-CSF) producing stromal layer resulted in gene transfer efficiencies to LTC-IC of 41%; a level previously obtainable only using co-cultivation infection techniques. Marrow cells enriched greater than or equal to 500-fold for LTC-IC (1-2% pure) by flow cytometry showed gene transfer efficiencies of 27% when infected in a similar fashion over a shorter period (24 h), but in the presence of added soluble IL-3 and G-CSF without stromal feeders, and this increased to 61% when Steel factor was also present during the infection period. By using a less highly enriched population of LTC-IC obtained by a bulk immunoselection technique applicable to large-scale clinical marrow harvests, gene transfer efficiencies to LTC-IC of 40% were achieved and this was increased to 60% by short-term preselection in G418. Southern analysis of DNA from the nonadherent cells produced by these LTC over a 6-wk period provided evidence of clonal evolution of LTC-IC in vitro. Leukemic chronic myelogenous leukemia LTC-IC were also infected at high efficiency using the same supernatant infection strategy with growth factor supplementation. These data demonstrate the feasibility of using cell-free virus preparations for infecting clinical marrow samples suitable for transplantation, as well as for further analysis of human marrow stem cell dynamics in vitro.

Authors

P F Hughes, J D Thacker, D Hogge, H J Sutherland, T E Thomas, P M Lansdorp, C J Eaves, R K Humphries

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts