Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity.
R A Zager, C A Foerder
R A Zager, C A Foerder
Published March 1, 1992
Citation Information: J Clin Invest. 1992;89(3):989-995. https://doi.org/10.1172/JCI115682.
View: Text | PDF
Research Article

Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity.

  • Text
  • PDF
Abstract

Recent in vivo studies suggest that heme Fe causes proximal tubular lipid peroxidation and cytotoxicity, thereby contributing to the pathogenesis of myoglobinuric (Mgb) acute renal failure. Because hydroxyl radical (.OH) scavengers [dimethylthiourea (DMTU), benzoate, mannitol] can mitigate this injury, it is postulated that .OH is a mediator of Mgb-induced renal damage. The present study has tested these hypotheses using an isolated rat proximal tubular segment (PTS) system. An equal mixture of Fe2+/Fe3+ (4 mM total), when added to PTS, caused marked cytotoxicity [as defined by lactate dehydrogenase (LDH) release] and lipid peroxidation [assessed by malondialdehyde (MDA) increments]. Fe2+ or Fe3+ alone each induced massive MDA elevations, but only Fe2+ caused cytotoxicity. Although both DMTU and benzoate decreased LDH release during the Fe2+/Fe3+ challenge, mannitol and GSH did not, despite equivalent reductions in .OH (gauged by the salicylate trap method). GSH and catalase (but not DMTU, benzoate, or mannitol) decreased MDA concentrations, suggesting the Fe-driven lipid peroxidation was more H2O2 than .OH dependent. Deferoxamine totally blocked Fe-induced LDH release, even under conditions in which it caused an apparent increase in .OH generation. Mgb paradoxically protected against Fe-mediated PTS injury, an effect largely reproduced by albumin. In conclusion, these data suggest that: (a) Fe can cause PTS lipid peroxidation and cytotoxicity by a non-.OH-dependent mechanism; (b) Fe-mediated cytotoxicity and lipid peroxidation are not necessarily linked; and (c) Mgb paradoxically protects PTS against Fe-mediated injury, suggesting that: (i) Mgb Fe may require liberation from its porphyrin ring before exerting toxicity; and (ii) the protein residue may blunt the resulting injury.

Authors

R A Zager, C A Foerder

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts