Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP).
D Ron, A R Brasier, R E McGehee Jr, J F Habener
D Ron, A R Brasier, R E McGehee Jr, J F Habener
View: Text | PDF
Research Article

Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP).

  • Text
  • PDF
Abstract

Tumor necrosis factor (TNF)-treated 3T3-L1 adipocytes were used as a model for studying the effects of systemic inflammation on adipose tissue. Lipopolysaccharide-treated monocyte-conditioned medium or recombinant human TNF alpha induced morphological dedifferentiation of the adipocytes and led to loss of adipocyte specific gene expression. Gel shift, Southwestern and Western immunoblot analysis demonstrated that dedifferentiation was preceded by a decrease in the DNA binding activity and protein level of the transcription factor CCAAT/enhancer binding protein (C/EBP). Liver activating protein, a related protein that binds identical DNA sequences, increased during cytokine treatment. Both proteins activate specific enhancer elements located in the promoter region of many genes whose transcription is altered during systemic inflammation. Pulse-chase labeling followed by immunoprecipitation demonstrated that C/EBP is a rapidly turning over protein in adipocytes and that cytokine treatment led to a specific, time dependent decrease in its rate of synthesis. Because C/EBP binding sites have been shown to play an important role in regulating the expression of genes involved in adipocyte metabolism, we propose that the TNF-induced changes in the complement of transcription factors binding those sites may be important in the pathogenesis of inflammation-induced atrophy of adipose tissue.

Authors

D Ron, A R Brasier, R E McGehee Jr, J F Habener

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts