Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel.
H A Berger, … , A E Smith, M J Welsh
H A Berger, … , A E Smith, M J Welsh
Published October 1, 1991
Citation Information: J Clin Invest. 1991;88(4):1422-1431. https://doi.org/10.1172/JCI115450.
View: Text | PDF
Research Article

Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel.

  • Text
  • PDF
Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) generates cAMP-regulated Cl- channels; mutations in CFTR cause defective Cl- channel function in cystic fibrosis epithelia. We used the patch-clamp technique to determine the single channel properties of Cl- channels in cell expressing recombinant CFTR. In cell-attached patches, an increase in cellular cAMP reversibly activated low conductance Cl- channels. cAMP-dependent regulation is due to phosphorylation, because the catalytic subunit of cAMP-dependent protein kinase plus ATP reversibly activated the channel in excised, cell-free patches of membrane. In symmetrical Cl- solutions, the channel had a channel conductance of 10.4 +/- 0.2 (n = 7) pS and a linear current-voltage relation. The channel was more permeable to Cl- than to I- and showed no appreciable time-dependent voltage effects. These biophysical properties are consistent with macroscopic studies of Cl- channels in single cells expressing CFTR and in the apical membrane of secretory epithelia. Identification of the single channel characteristics of CFTR-generated channels allows further studies of their regulation and the mechanism of ion permeation.

Authors

H A Berger, M P Anderson, R J Gregory, S Thompson, P W Howard, R A Maurer, R Mulligan, A E Smith, M J Welsh

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts