Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

A unique receptor-independent mechanism by which insulinlike growth factor I regulates the availability of insulinlike growth factor binding proteins in normal and transformed human fibroblasts.
C A Conover
C A Conover
Published October 1, 1991
Citation Information: J Clin Invest. 1991;88(4):1354-1361. https://doi.org/10.1172/JCI115441.
View: Text | PDF
Research Article

A unique receptor-independent mechanism by which insulinlike growth factor I regulates the availability of insulinlike growth factor binding proteins in normal and transformed human fibroblasts.

  • Text
  • PDF
Abstract

Insulin-like growth factor I and II (IGF-I and IGF-II) associate with specific IGF binding proteins (IGFBPs) present in plasma and extracellular fluids that can modulate the anabolic effects of these peptides. IGF-I has been shown to increase IGFBP concentrations in vivo and in vitro, but the mechanism and significance of this action are unknown. We examined these issues using normal and simian virus 40-transformed adult human fibroblasts (SV40-HF) in culture. Treatment with IGF-I markedly stimulated the appearance of IGFBP-3 (42/38 kD doublet), a 36 kD IGFBP, and 28-32 kD IGFBPs in the medium of these cells, as assessed by Western ligand blotting; IGF-I decreased levels of 24 kD IGFBP in normal HF cultures. The IGF-I-induced change in IGFBP levels was not a type I IGF receptor-mediated effect on IGFBP synthesis because (a) high concentrations of insulin did not mimic IGF-I's effect; (b) IGF-II and IGF-I analogues having reduced affinity for the IGF-I receptor were equipotent with IGF-I in increasing medium IGFBPs; (c) [QAYL]IGF-I, and IGF-I analogue having normal receptor affinity and decreased affinity for IGFBPs, had no effect; and (d) alpha IR-3, a monoclonal antibody specific for the type I IGF receptor, did not block IGF-I-stimulated increases in IGFBPs. In physiological studies, preincubation with 1 nM IGF-I had no effect on type I IGF receptor binding in normal HF and SV40-HF. In contrast, preincubation of cells with an equivalent concentration of [QAYL]IGF-I downregulated the receptors 40-50%. Changes in cell surface receptor number were reflected in cell responsiveness to IGF-I-stimulated [3H]thymidine incorporation and [3H]aminoisobutyric acid uptake. In conclusion, IGF-I regulates the availability of specific IGFBPs in cultured human fibroblasts by a novel receptor-independent mechanism. Rapid changes in levels of soluble IGFBPs as a direct response to extracellular IGF-I, in turn, modulate IGF-I peptide and receptor interaction, and may constitute an important level of control in IGF cellular physiology.

Authors

C A Conover

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts