Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats.
B B Kahn, L Rossetti, H F Lodish, M J Charron
B B Kahn, L Rossetti, H F Lodish, M J Charron
View: Text | PDF
Research Article

Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats.

  • Text
  • PDF
Abstract

This study was designed to determine whether altered glucose transporter expression is essential for the in vivo insulin-resistant glucose uptake characteristic of streptozocin-induced diabetes. Immunofluorescence in rat skeletal muscle colocalizes GLUT4 with dystrophin, both intrinsic to muscle fibers. In contrast, GLUT1 is extrinsic to muscle fibers, probably in perineurial sheath. Immunoblotting shows that levels of GLUT1 and GLUT4 protein per DNA in hindlimb muscle are unaltered from control levels at 7 d of diabetes but decrease to approximately 20% of control at 14 d of diabetes. This decrease is prevented by insulin treatment. In adipose cells of 7 d diabetic rats, GLUT4 levels are depressed. Thus, GLUT4 undergoes tissue-specific regulation in response to diabetes. GLUT4 and GLUT1 mRNA levels in muscle are decreased 62-70% at both 7 and 14 d of diabetes and are restored by insulin treatment. At 7 d of diabetes, when GLUT4 protein levels in muscle are unaltered, in vivo insulin-stimulated glucose uptake measured by euglycemic clamp is 54% of control. This reflects impairment in both glycogen synthesis and glycolysis and the substrate common to these two pathways, glucose-6-phosphate, is decreased approximately 30% in muscle of diabetic rats. These findings suggest a defect early in the pathway of glucose utilization, probably at the step of glucose transport. Because GLUT1 and GLUT4 levels are unaltered at 7 d of diabetes, reduced glucose uptake in muscle probably reflects impaired glucose transporter translocation or intrinsic activity. Later, at 14 d of diabetes, GLUT1 and GLUT4 protein levels are reduced, suggesting that sequential defects may contribute to the insulin-resistant glucose transport characteristic of diabetes.

Authors

B B Kahn, L Rossetti, H F Lodish, M J Charron

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts