Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs.
A Chu, … , S Moncada, F R Cobb
A Chu, … , S Moncada, F R Cobb
Published June 1, 1991
Citation Information: J Clin Invest. 1991;87(6):1964-1968. https://doi.org/10.1172/JCI115223.
View: Text | PDF
Research Article

Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs.

  • Text
  • PDF
Abstract

The role of nitric oxide in basal vasomotor tone and stimulated endothelium-dependent dilations in the coronary arteries in chronically instrumented awake dogs was studied by examining the consequences of inhibiting endogenous nitric oxide formation with the specific inhibitor of nitric oxide formation, NG-monomethyl-L-arginine (L-NMMA). In four awake dogs, coronary dimension crystals were chronically implanted on the circumflex artery for the measurement of epicardial coronary diameter, and Doppler flow probes were implanted for quantitation of phasic coronary blood flow (vasomotion of distal regulatory resistance vessels). Basal epicardial coronary diameter, acetylcholine-stimulated endothelium-dependent dilation, and flow-induced endothelium-dependent dilation of the epicardial arteries and phasic blood flow were recorded before, and after 5, 15, 50, and 120 mg/kg of L-NMMA. L-NMMA induced a dose-related increase in basal epicardial coronary vasomotor tone. There was an accompanying increase in aortic pressure and a decrease in heart rate. At doses greater than or equal to 50 mg/kg, rest phasic coronary blood flow was also decreased. Left ventricular end-diastolic pressure and contractility were not significantly changed. In contrast, the flow-induced or acetylcholine-stimulated endothelium-dependent responses were attenuated only after infusion of the highest does of L-NMMA (120 mg/kg). The changes in the basal vasomotor tone and acetylcholine-stimulated endothelium-dependent responses returned towards the control states in the presence of L-arginine (660 mg/kg). These data support the view that nitric oxide plays a significant role in modulating basal vasomotion and endothelial-dependent dilation stimulated by acetylcholine or increase in blood flow in epicardial coronary arteries and also influence the regulation of coronary blood flow during physiologic conditions.

Authors

A Chu, D E Chambers, C C Lin, W D Kuehl, R M Palmer, S Moncada, F R Cobb

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts