Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Entrainment of pulsatile insulin secretion by oscillatory glucose infusion.
J Sturis, … , J D Blackman, K S Polonsky
J Sturis, … , J D Blackman, K S Polonsky
Published February 1, 1991
Citation Information: J Clin Invest. 1991;87(2):439-445. https://doi.org/10.1172/JCI115015.
View: Text | PDF
Research Article

Entrainment of pulsatile insulin secretion by oscillatory glucose infusion.

  • Text
  • PDF
Abstract

Ultradian "oscillations" or "pulses" of insulin secretion with periods around 120 min occur in man. It is not known whether glucose plays an active role in generating these oscillations, or if an intrapancreatic pacemaker generates oscillations in insulin secretion that entrain glucose passively. To determine if the frequency of pulses of insulin secretion could be modified by oscillatory glucose infusion, seven normal men were studied on three separate occasions. The first study involved a constant glucose infusion administered at a rate of 6 mg/kg per min for 28 h. During the two subsequent studies, the subjects received an oscillatory glucose infusion for 28 h with the same mean rate, an amplitude of 33% above and below the mean infusion rate, a sinusoidal waveshape and a period either 20% longer ("slow oscillatory infusion") or 20% shorter ("rapid oscillatory infusion") than the periodicity observed during constant glucose infusion. Samples for insulin, C-peptide, and glucose were drawn at 10-min intervals during the last 24 h of each study. Insulin secretion rates were calculated by deconvolution of C-peptide levels. During constant glucose infusion, the respective periods of oscillation of glucose and insulin secretion averaged 126 +/- 5 min and 118 +/- 3 min (mean +/- SEM). During the slow oscillatory infusion, the period of infusion was 155 +/- 7 min and the periods of insulin secretion and glucose were, respectively, 155 +/- 7 min and 150 +/- 5 min. During rapid oscillatory infusion, the period of infusion was 103 +/- 5 min and the period of both insulin secretion and glucose was 105 +/- 5 min. Thus the periodicity of both insulin secretion and plasma glucose changed in parallel with the exogenous periodicity, indicating complete entrainment of the secretory oscillations. These results suggest that the ultradian oscillations of insulin secretion are caused by the feedback loop linking glucose and insulin.

Authors

J Sturis, E Van Cauter, J D Blackman, K S Polonsky

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts