Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia.
S Adnot, B Raffestin, S Eddahibi, P Braquet, P E Chabrier
S Adnot, B Raffestin, S Eddahibi, P Braquet, P E Chabrier
View: Text | PDF
Research Article

Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia.

  • Text
  • PDF
Abstract

To determine whether exposure to chronic hypoxia and subsequent development of pulmonary hypertension induces alterations of endothelium-dependent relaxation in rat pulmonary vascular bed, we studied isolated lung preparations from rats exposed to either room air (controls) or hypoxia (H) during 1 wk (1W-H), 3 wk (3W-H), or 3W-H followed by 48 h recovery to room air (3WH + R). In lungs pretreated with meclofenamate (3 microM), the endothelium-dependent vasodilator responses to acetylcholine (10(-9)-10(-6) M) and ionophore A23187 (10(-9)-10(-7) M) were examined during conditions of increased tone by U46619 (50 pmol/min). Acetylcholine or A23187 produced dose-dependent vasodilation in control lungs, this response was reduced in group 1W-H (P less than 0.02), abolished in group 3W-H (P less than 0.001), and restored in group 3WH + R. In contrast, the endothelium-independent vasodilator agent sodium nitroprusside remained fully active in group 3W-H. The pressor response to 300 pM endothelin was greater in group 3W-H than in controls (6.8 +/- 0.5 mmHg vs. 1.6 +/- 0.2 mmHg, P less than 0.001) but was not potentiated by the endothelium-dependent relaxing factor (EDRF) antagonists: hydroquinone (10(-4) M); methylene blue (10(-4) M); and pyrogallol (3 x 10(-5) M) as it was in controls. It was similar to controls in group 3W-H + R. Our results demonstrate that hypoxia-induced pulmonary hypertension is associated with a loss of EDRF activity in pulmonary vessels, with a rapid recovery on return to a normoxic environment.

Authors

S Adnot, B Raffestin, S Eddahibi, P Braquet, P E Chabrier

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts