Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum.
S A Dolan, … , L H Miller, T E Wellems
S A Dolan, … , L H Miller, T E Wellems
Published August 1, 1990
Citation Information: J Clin Invest. 1990;86(2):618-624. https://doi.org/10.1172/JCI114753.
View: Text | PDF
Research Article

Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum.

  • Text
  • PDF
Abstract

The human malaria parasite Plasmodium falciparum demonstrates variability in its dependence upon erythrocyte sialic acid residues for invasion. Some lines of P. falciparum invade neuraminidase-treated or glycophorin-deficient red blood cells poorly, or not at all, while other lines invade such cells at substantial rates. To explore the molecular basis of non-sialic acid dependent invasion, we selected parasite lines from a clone (Dd2) that initially exhibited low invasion of neuraminidase-treated erythrocytes. After maintaining Dd2 for several cycles in neuraminidase-treated erythrocytes, parasite lines were recovered that invaded both untreated and neuraminidase-treated erythrocytes at equivalently high rates (Dd2/NM). The change in phenotype was maintained after removal of selection pressure. Four subclones of Dd2 were isolated and each readily converted from sialic acid dependence to non-sialic acid dependence during continuous propagation in neuraminidase-treated erythrocytes. The neuraminidase-selected lines and the Dd2 clone demonstrated identical restriction fragment length polymorphism markers indicating that the Dd2 clone was not contaminated during the selection process. Parasite proteins that bound to neuraminidase-treated and untreated erythrocytes were indistinguishable among the parent Dd2 clone and the neuraminidase-selected lines. The ability of the Dd2 parasite to change its invasion requirements for erythrocyte sialic acid suggests a switch mechanism permitting invasion by alternative pathways.

Authors

S A Dolan, L H Miller, T E Wellems

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts