Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Inappropriate hepatic cholesterol synthesis expands the cellular pool of sterol available for recruitment by bile acids in the rat.
L E Bilhartz, D K Spady, J M Dietschy
L E Bilhartz, D K Spady, J M Dietschy
View: Text | PDF
Research Article

Inappropriate hepatic cholesterol synthesis expands the cellular pool of sterol available for recruitment by bile acids in the rat.

  • Text
  • PDF
Abstract

These studies test the hypothesis that a major determinant of excessive biliary cholesterol secretion is a level of hepatic sterol synthesis that is inappropriately high relative to the needs of the liver cell for preserving cholesterol balance. Biliary cholesterol secretion was measured in vivo in two models after loading the hepatocyte with sterol by two different mechanisms. In the first model, cholesterol was delivered physiologically to the liver in chylomicron remnants. This resulted in a sixfold increase in cholesteryl ester content and marked suppression of cholesterol synthesis, but biliary cholesterol secretion remained essentially constant. In the second model, 3-hydroxy-3-methyl-glutaryl CoA reductase levels in the liver were markedly increased by chronic mevinolin (lovastatin) administration. Withdrawal of the inhibitor resulted in a sudden fivefold increase in the rate of sterol synthesis in the liver of the experimental animals that was inappropriately high for cellular needs. This excessive synthesis, in turn, was accompanied by a fivefold increase in the cholesteryl ester content, enrichment of microsomal membranes with cholesterol and, most importantly, by a threefold increase in the rate of biliary sterol secretion. As the rate of sterol synthesis gradually returned to normal over 48 h, the cholesterol ester content, the lipid composition of the microsomal membranes, and rate of cholesterol secretion into bile also returned to baseline values. These results further support the concept of functional compartmentalization of cholesterol in the hepatocyte. Derangements that cause an inappropriately high rate of sterol synthesis in the endoplasmic reticulum may lead to an expansion of that pool of cholesterol that is recruitable by bile acids and, hence, to greater situation of the bile.

Authors

L E Bilhartz, D K Spady, J M Dietschy

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts