Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules.
G Alpini, … , L Sarkozi, N Tavoloni
G Alpini, … , L Sarkozi, N Tavoloni
Published February 1, 1988
Citation Information: J Clin Invest. 1988;81(2):569-578. https://doi.org/10.1172/JCI113355.
View: Text | PDF
Research Article

Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules.

  • Text
  • PDF
Abstract

To establish the role of the biliary epithelium in bile formation, we studied several aspects of biliary physiology in control rats and in rats with ductular cell hyperplasia induced by a 14-d extrahepatic biliary obstruction. Under steady-state conditions, spontaneous bile flow was far greater in obstructed rats (266.6 +/- 51.9 microliters/min per kg) than in controls (85.6 +/- 10.6 microliters/min per kg), while excretion of 3-hydroxy bile acids was the same in the two groups. Infusion of 10 clinical units (CU)/kg per h secretin produced a minimal choleretic effect in controls (+3.8 +/- 1.9 microliters/min per kg) but a massive increase in bile flow in the obstructed animals (+127.8 +/- 34.9 microliters/min per kg). Secretin choleresis was associated with an increase in bicarbonate biliary concentration and with a decline in [14C]mannitol bile-to-plasma ratio, although solute biliary clearance significantly increased. Conversely, administration of taurocholate (5 mumol/min per kg) produced the same biliary effects in control rats and in rats with proliferated biliary ductules. In the obstructed animals, the biliary tree volume measured during taurocholate choleresis (67.4 +/- 15.8 microliters/g liver) was significantly greater than that determined during the increase in bile flow induced by secretin (39.5 +/- 10.4 microliters/g liver). These studies indicate that, in the rat, the proliferated bile ductules/ducts spontaneously secrete bile and are the site of secretin choleresis. Furthermore, because the proliferated cells expressed phenotypic traits of bile ductular cells, our results suggest that whereas under normal conditions the biliary ductules/ducts in the rat seem to contribute little to bile formation, secretion of water and electrolytes is a property of biliary epithelial cells.

Authors

G Alpini, R Lenzi, L Sarkozi, N Tavoloni

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts