The C6-sulfidopeptide leukotrienes C4 (LTC4) and D4 (LTD4) evoked increases in the cytosolic concentration of intracellular calcium ([Ca+2]i) in dimethylsulfoxide-differentiated HL-60 cells, as assessed by the fluorescence of quin-2. The increases in [Ca+2]i reached a peak within 15-90 s, attained 50% of the maximum level at 1.2 nM LTD4 and 60 nM LTC4, were greater in maximal magnitude for LTD4 than LTC4, and subsided in 5-7 min. Flow cytometric evaluation of the LTD4-induced increases in [Ca+2]i, reflected in increases in the fluorescence of intracellular indo-1, revealed that a mean of 77% of differentiated HL-60 cells responded, as contrasted with lesser increases in only 50% of undifferentiated HL-60 cells. The capacity of pretreatment of HL-60 cells with LTD4 to prevent subsequent responses of [Ca+2]i to LTC4 and LTD4, and the finding that the serine-borate inhibitor of conversion of LTC4 to LTD4 suppressed concurrently both LTC4-induced rises in [Ca+2]i and increases in adherence to Sephadex G-25 indicated that the responses of HL-60 cells to LTC4 required conversion to LTD4. That pertussis toxin and a chemical antagonist of LTD4 reduced the [Ca+2]i response suggested a dependence on LTD4 receptors. The LTD4-induced increases in [Ca+2]i were dependent on extracellular calcium and diminished by lanthanum, but not affected by nifedipine nor associated with changes in membrane potential, as measured with the fluorescent probe 3,3'-dipentyloxacarbocyanine. Thus, the increase in [Ca+2]i in HL-60 cells, which is coupled to an increase in adherence, appears to involve LTD4 receptor-specific and voltage-independent calcium channels in the plasma membrane.
L Baud, E J Goetzl, C H Koo
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.