Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule.
Y Ando, … , H R Jacobson, M D Breyer
Y Ando, … , H R Jacobson, M D Breyer
Published August 1, 1987
Citation Information: J Clin Invest. 1987;80(2):590-593. https://doi.org/10.1172/JCI113110.
View: Text | PDF
Research Article

Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule.

  • Text
  • PDF
Abstract

We explored the role for protein kinase C (PKC) in modulating vasopressin (AVP)-stimulated hydraulic conductivity (Lp) in rabbit cortical collecting tubule (CCT) perfused in vitro at 37 degrees C. In control studies, 10 microU/ml AVP increased Lp (mean +/- SE, X 10(-7) centimeters/atmosphere per second) from 4.4 +/- 0.9 to 166.0 +/- 10.4. Pretreatment with dioctanoylglycerol (DiC8) suppressed AVP stimulated peak Lp (peak Lp, 21.9 +/- 3.1). Pretreatment with 10(-9) and 10(-7) M 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) also blocked the increase in Lp in a dose-dependent fashion (peak Lp, 59.3 +/- 7.5 and 18.6 +/- 4.8, respectively). Inactive phorbol ester, 4 alpha-phorbol 12 beta,13 alpha-didecanoate (10(-7) M), had no effect. PMA also suppressed the increase in Lp induced by 10(-4) M 8-p-chlorophenylthio-cyclic AMP (CcAMP): peak Lp was 169.4 +/- 14.9 in control, 79.2 +/- 5.5 with 10(-9) M PMA, and 25.7 +/- 2.9 with 10(-7) M PMA. Furthermore, when 10(-7) M PMA was added to the bath 10 min after exposure to AVP, the Lp response to AVP was blocked. Peak Lp was 52.4 +/- 9.6 with PMA vs. 165.1 +/- 10.0 in control. Phosphatidic acid (PA), which is thought to stimulate phosphatidylinositol (PI) turnover, produced similar inhibitory effects on AVP as well as CcAMP-stimulated Lp: PA suppressed 10-microU/ml AVP-induced peak Lp from a control value of 159.6 +/- 7.9 to 88.9 +/- 15.8, and 10(-4) M CcAMP induced peak Lp from 169.4 +/- 14.9 to 95.5 +/- 7.7. We conclude that PMA, at concentrations known to specifically activate PKC, suppresses the hydroosmotic effect of AVP on CCT; This suppression is primarily a post-cAMP event; Inhibition of AVP-stimulated Lp by DiC8 and PA also suggests an inhibitory role for the PKC system; The ability of pre- and post-AVP administration of PMA to blunt the AVP response suggests that agents that act through modulation of PI turnover in CCT may regulate the hydroosmotic effect of AVP.

Authors

Y Ando, H R Jacobson, M D Breyer

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts