Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles.
T Akiba, … , J Calamina, D G Warnock
T Akiba, … , J Calamina, D G Warnock
Published December 1, 1986
Citation Information: J Clin Invest. 1986;78(6):1472-1478. https://doi.org/10.1172/JCI112738.
View: Text | PDF
Research Article

Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles.

  • Text
  • PDF
Abstract

The present studies examined the mechanism of bicarbonate transport across basolateral membrane vesicles prepared from rabbit renal cortex. Isotopic sodium uptake was stimulated by bicarbonate when compared with gluconate (2.5 nmol/mg protein per 5 s versus 1.4 nmol/mg protein per 5 s), and this process was inhibited by disulfonic stilbenes. Imposition of an interior-positive potassium diffusion potential further stimulated isotopic sodium uptake to 3.4 nmol/mg protein per 5 s, an effect that occurred only in the presence of bicarbonate and was blocked by disulfonic stilbenes. Kinetic analysis of the rate of bicarbonate-dependent sodium uptake as a function of sodium concentration revealed saturable stimulation with a Vmax of 2.7 nmol/mg protein per 2 s and a Km of 10.4 mM. The effect of bicarbonate concentration on bicarbonate-dependent sodium uptake was more complex. The present results demonstrate an electrogenic (negatively charged) sodium/bicarbonate cotransporter in basolateral membrane vesicles from the rabbit renal cortex. The electrogenicity implies a stoichiometry of at least two bicarbonate ions for each sodium ion.

Authors

T Akiba, R J Alpern, J Eveloff, J Calamina, D G Warnock

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts