Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Ammonia production by isolated mouse proximal tubules perfused in vitro. Effect of metabolic acidosis.
G T Nagami, … , C M Sonu, K Kurokawa
G T Nagami, … , C M Sonu, K Kurokawa
Published July 1, 1986
Citation Information: J Clin Invest. 1986;78(1):124-129. https://doi.org/10.1172/JCI112540.
View: Text | PDF
Research Article

Ammonia production by isolated mouse proximal tubules perfused in vitro. Effect of metabolic acidosis.

  • Text
  • PDF
Abstract

We examined the effects of metabolic acidosis in vivo and reduced bath and luminal pH in vitro on total NH3 (NH3 + NH+4) production rates by isolated mouse proximal tubule segments. Midproximal tubule segments were obtained from mice with NH4Cl-induced metabolic acidosis and from nonacidotic controls. The segments were perfused with modified Krebs-Ringer bicarbonate (KRB) buffer, incubated in KRB buffer containing 0.5 mM L-glutamine and 1.0 mM sodium acetate, and gassed with 95% O2 and 5% CO2. Isolated unperfused and perfused proximal tubules from acidotic mice produced total NH3 at higher rates than corresponding tubules from nonacidotic mice. Perfusion of the tubular lumen stimulated total NH3 production by tubules from both acidotic and nonacidotic mice. In contrast, lowering the bath pH to 7.0 by lowering the HCO3- concentration increased total NH3 production rates by tubules from nonacidotic mice but not by tubules from acidotic mice. Reducing the HCO3- concentration of the bath buffer to 10 mM while maintaining a pH of 7.4 had no significant effect on total NH3 production by tubules from nonacidotic mice. Lowering the luminal fluid pH by reducing the perfusate HCO-3 from 25 mM to 10, 5, or 1.2 mM while maintaining a bath pH of 7.4 lowered collected luminal fluid pH but had no effect on total NH3 production by proximal tubules from nonacidotic mice. These observations demonstrated that metabolic acidosis in vivo stimulated total NH3 production in isolated mouse proximal tubule segments and that low peritubular pH and HCO-3 stimulated total NH3 production by proximal tubule segments from nonacidotic mice in vitro.

Authors

G T Nagami, C M Sonu, K Kurokawa

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts