Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase.
L A Smedly, … , P M Henson, G S Worthen
L A Smedly, … , P M Henson, G S Worthen
Published April 1, 1986
Citation Information: J Clin Invest. 1986;77(4):1233-1243. https://doi.org/10.1172/JCI112426.
View: Text | PDF
Research Article

Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase.

  • Text
  • PDF
Abstract

The neutrophil has been implicated as an important mediator of vascular injury, especially after endotoxemia. This study examines neutrophil-mediated injury to human microvascular endothelial cells in vitro. We found that neutrophils stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP), the complement fragment C5a, or lipopolysaccharide (LPS) (1-1,000 ng/ml) alone produced minimal endothelial injury over a 4-h assay. In contrast, neutrophils incubated with endothelial cells in the presence of low concentrations of LPS (1-10 ng/ml) could then be stimulated by FMLP or C5a to produce marked endothelial injury. Injury was maximal at concentrations of 100 ng/ml LPS and 10(-7) M FMLP. Pretreatment of neutrophils with LPS resulted in a similar degree of injury, suggesting that LPS effects were largely on the neutrophil. Endothelial cell injury produced by LPS-exposed, FMLP-stimulated neutrophils had a time course similar to that induced by the addition of purified human neutrophil elastase, and different from that induced by hydrogen peroxide (H2O2). Further, neutrophil-mediated injury was not inhibited by scavengers of a variety of oxygen radical species, and occurred with neutrophils from a patient with chronic granulomatous disease, which produced no H2O2. In contrast, the specific serine elastase inhibitor methoxy-succinyl-alanyl-alanyl-prolyl-valyl-chloromethyl ketone inhibited 63% of the neutrophil-mediated injury and 64% of the neutrophil elastase-induced injury. However, neutrophil-mediated injury was not inhibited significantly by 50% serum, 50% plasma, or purified alpha 1 proteinase inhibitor. These results suggest that, in this system, chemotactic factor-stimulated human neutrophil injury of microvascular endothelial cells is enhanced by small amounts of LPS and may be mediated in large part by the action of neutrophil elastase.

Authors

L A Smedly, M G Tonnesen, R A Sandhaus, C Haslett, L A Guthrie, R B Johnston Jr, P M Henson, G S Worthen

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts