Myocardial oxygen consumption is regulated by interrelated mechanical and inotropic conditions; there is a parallel increase in the aerobic metabolism and inotropic state during beta-adrenergic stimulation under fixed mechanical conditions. In contrast, there is some evidence that beta-blockade may reduce oxygen consumption through effects independent of its influence on mechanical conditions and contractile state, and that prolonged beta-blockade may sensitize the myocardium to beta-adrenergic stimulation. To clarify these two points, the present study examined the relationship of myocardial energetics to mechanics and inotropism during acute beta-blockade and after the withdrawal of long-term beta-blockade, whereupon the basis for any effect observed was sought by characterizing the number, affinity, and affinity states of the beta-receptors as well as the coupling of activated beta-receptors to cyclic AMP generation. Studies of right ventricular papillary muscles from control and chronically beta-blocked cats demonstrated contractile and energetic properties as well as dose-response behavior and inotropic specificity suggestive of an increase in myocardial sensitivity to beta-adrenoceptor stimulation in the latter group. Assays of cardiac beta-adrenoceptors from further groups of control and pretreated cats, both in cardiac tissue and in isolated cardiac muscle cells, failed to define a difference between the two groups either in terms of receptor number and affinity or in terms of the proportion of receptors in the high-affinity state. However, coupling of the activated beta-adrenoceptors to cyclic AMP generation was enhanced in cardiac muscle cells from chronically beta-blocked cats. These data demonstrate that beta-adrenoceptor blockade (a) produces parallel effects on inotropic state and oxygen consumption without an independent effect on either and (b) increases myocardial sensitivity to beta-adrenergic stimulation after beta-blockade withdrawal, not by "up-regulation" of the cardiac beta-adrenoceptors, but instead by more effective coupling of these receptors when activated to cyclic AMP generation.
G Cooper 4th, R L Kent, P McGonigle, A M Watanabe
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.