Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats.
S K Jain
S K Jain
Published July 1, 1985
Citation Information: J Clin Invest. 1985;76(1):281-286. https://doi.org/10.1172/JCI111958.
View: Text | PDF
Research Article

In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats.

  • Text
  • PDF
Abstract

Phospholipid distribution across erythrocyte membrane bilayer is asymmetrical. In normal erythrocytes, entire phosphatidylserine (PS) and most of the phosphatidylethanolamine (PE) is present on the cytoplasmic side of membrane bilayer, whereas phosphatidylcholine (PC) and sphingomyelin (SM) are predominantly present at the outer side of membrane bilayer. The present study was undertaken to determine whether membrane lipid peroxidation has any effect on the distribution of PS, PE, and PC across erythrocyte membrane bilayer in vivo in an animal model. Erythrocyte membrane lipid peroxidation was induced in rats by administering phenylhydrazine, an oxidant drug. Membrane phospholipid organization was determined by using bee venom phospholipase-A2 and indirectly by measuring clotting time on recalcification of normal human platelet-poor plasma in the presence of Russell's viper venom. Phenylhydrazine administration to rats caused significant membrane lipid peroxidation as measured by the accumulation of malonyldialdehyde (MDA), an end product of fatty acid peroxidation, as well as externalization of a significant portion of PS and PE from the inner to the outer side of membrane bilayer in erythrocytes. There was a significant positive correlation (r) between the amount of MDA accumulated in the erythrocytes and the movement of PS (r = 0.92) and PE (r = 0.96) from inner to the outer membrane bilayer and PC (r = 0.81) from outer to the inner membrane bilayer. Erythrocytes of phenylhydrazine-treated rats also showed significantly reduced clotting time. This reduction in clotting time had a significant positive correlation with MDA accumulation (r = 0.92) and PS externalization (r = 0.90). Both the effect of phenylhydrazine on erythrocyte membrane lipid peroxidation and alterations in phospholipid organization and coagulability were blocked when rats were simultaneously administered with vitamin E or C antioxidants.

Authors

S K Jain

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts