Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Inhibition and subsequent enhancement of platelet responsiveness by prostacyclin in the rabbit. Relationship to platelet adenosine 3',5'-cyclic monophosphate.
M Vanderwel, R J Haslam
M Vanderwel, R J Haslam
View: Text | PDF
Research Article

Inhibition and subsequent enhancement of platelet responsiveness by prostacyclin in the rabbit. Relationship to platelet adenosine 3',5'-cyclic monophosphate.

  • Text
  • PDF
Abstract

Methods were developed for measuring changes in platelet sensitivity to a release-inducing stimulus and in platelet cyclic AMP in fresh whole blood samples from rabbits. These techniques permitted detection of the effects of exogenous and endogenous prostacyclin on circulating platelets. In these methods, rabbit platelets were labeled in vitro by incubation with [14C]serotonin and [3H]adenine and then transfused into other rabbits. Release of platelet [14C]serotonin by a standard dose of synthetic platelet-activating factor (40 pmol/ml) and the platelet cyclic [3H]AMP levels were then measured in citrated blood from the conscious animals within 2 min of arterial puncture. Bolus intravenous injections of prostacyclin (1-10 nmol/kg) caused concentration-dependent increases in platelet cyclic AMP after 2 min, which decreased approximately 75% by 5 min, and disappeared after 30 min. Significant inhibition of the platelet release reaction was detected 2 min but not 5 min after injection of 10 nmol of prostacyclin per kilogram. With lower doses, significant enhancement of the release of [14C]serotonin was observed after 5 min. Similar changes in platelet responsiveness and cyclic [3H]AMP were observed after release of endogenous prostacyclin by intravenous injection of angiotensin II (5 nmol/kg); inhibition of the release of [14C]serotonin after 2 min was followed by potentiation after 5 min, though platelet cyclic [3H]AMP remained above control values. In these experiments, the time course of the changes in platelet cyclic [3H]AMP correlated closely with values for blood prostacyclin obtained previously (Haslam, R.J., and M.D. McClenaghan, 1981, Nature [Lond.]., 292:364-366). Prostacyclin also had a biphasic effect on the release of [14C]serotonin when added to citrated blood in vitro, though both the increase in sensitivity to platelet-activating factor and the return of platelet cyclic [3H]AMP towards control values took place more slowly. At all times, addition of platelet-activating factor decreased platelet cyclic [3H]AMP towards but not below the control level observed in the absence of prostacyclin. Our results indicate that although transient increases in platelet cyclic AMP cause an immediate decrease in platelet responsiveness in vivo or in vitro, a period of enhanced platelet sensitivity follows as platelet cyclic AMP falls.

Authors

M Vanderwel, R J Haslam

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts