Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules.
V L Schuster
V L Schuster
Published June 1, 1985
Citation Information: J Clin Invest. 1985;75(6):2056-2064. https://doi.org/10.1172/JCI111925.
View: Text | PDF
Research Article

Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules.

  • Text
  • PDF
Abstract

We studied the effects of cyclic AMP (cAMP) on HCO-3 transport by rabbit cortical collecting tubules perfused in vitro. Net HCO-3 secretion was observed in tubules from NaHCO3- loaded rabbits. 8-Bromo-cAMP-stimulated net HCO-3 secretion, whereas secretion fell with time in control tubules. Both isoproterenol and vasopressin (ADH) are known to stimulate adenylate cyclase in this epithelium; however, only isoproterenol stimulated net HCO-3 secretion. The mechanism of cAMP-stimulated HCO-3 secretion was examined. If both HCO-3 and H+ secretion were to occur simultaneously in tubules exhibiting net HCO-3 secretion, cAMP might increase the net HCO-3 secretory rate by inhibiting H+ secretion, by stimulating HCO-3 secretion, or both. These possibilities were examined using basolateral addition of the disulfonic stilbene (4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). In acidifying tubules from NH4Cl-loaded rabbits, DIDS eliminated HCO-3 reabsorption, a result consistent with known effects of DIDS as an inhibitor of H+ secretion. In contrast, cAMP left acidification (H+ secretion) intact. DIDS applied to HCO-3 secretory tubules failed to increase the HCO-3 secretory rate, indicating minimal H+ secretion in HCO-3 secreting tubules. Thus, inhibition of H+ secretion by cAMP could not account for the cAMP-induced stimulation of net HCO-3 secretion. cAMP-stimulated HCO-3 secretion was reversibly eliminated by 0 Cl perfusate, whereas luminal DIDS had no effect. Bath amiloride (1 mM) failed to eliminate cAMP-stimulated HCO-3 secretion when bath [Na+] was 145 mM or 5 mM. cAMP depolarized the transepithelial voltage. The collected fluid [HCO-3] after cAMP could be accounted for by electrical driving forces, suggesting that cAMP stimulates passive HCO-3 secretion. However, cAMP did not alter HCO-3 permeability measured under conditions expected to inhibit transcellular HCO-3 movement (0 Cl- solutions and bath DIDS). This measured HCO-3 permeability was not high enough to account, by passive diffusion, for the HCO-3 fluxes observed in Cl-containing solutions. We conclude the following: cAMP increased net HCO3- secretion by stimulating HCO3- secretion and not by inhibiting H+ secretion; this HCO3- secretion may have occurred by Cl-HCO3- exchange; Na+-H+ exchange appeared not to play a role in basolateral H+ extrusion under these conditions; and the stimulation of HCO3- secretion by isoproterenol, but not ADH, suggests the existence of separate cell cAMP pools or cellular heterogeneity in this cAMP response.

Authors

V L Schuster

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts