Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.
P F Franck, E M Bevers, B H Lubin, P Comfurius, D T Chiu, J A Op den Kamp, R F Zwaal, L L van Deenen, B Roelofsen
P F Franck, E M Bevers, B H Lubin, P Comfurius, D T Chiu, J A Op den Kamp, R F Zwaal, L L van Deenen, B Roelofsen
View: Text | PDF
Research Article

Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.

  • Text
  • PDF
Abstract

We have previously reported that the normal membrane phospholipid organization is altered in sickled erythrocytes. More recently, we presented evidence of enhanced transbilayer movement of phosphatidylcholine (PC) in deoxygenated reversibly sickled cells (RSC) and put forward the hypothesis that these abnormalities in phospholipid organization are confined to the characteristic protrusions of these cells. To test this hypothesis, we studied the free spicules released from RSC by repeated sickling and unsickling as well as the remnant despiculated cells. The rate of transbilayer movement of PC in the membrane of deoxygenated remnant despiculated cells was determined by following the fate of 14C-labelled PC, previously introduced into the outer monolayer under fully oxygenated conditions using a PC-specific phospholipid exchange protein from beef liver. The rate of transbilayer movement of PC in the remnant despiculated cells was significantly slower than in deoxygenated native RSC and was not very much different from that in oxygenated native RSC or irreversibly sickled cells. The free spicules had the same lipid composition as the native cells, but were deficient in spectrin. These spicules markedly enhanced the rate of thrombin formation in the presence of purified prothrombinase (Factor Xa, Factor Va, and Ca2+) and prothrombin, indicating the exposure of a significant fraction of phosphatidylserine (PS) in the outer monolayer. This effect was not observed when the spicules in this assay were replaced by normal erythrocytes, deoxygenated native RSC, or a deoxygenated sample of RSC after repetitive sickling/unsickling. The results are interpreted to indicate that the destabilization of the lipid bilayer in sickled cells, expressed by the enhanced flip-flop of PC and the exposure of PS in the outer monolayer, occurs predominantly in those parts of the membrane that are in spicular form.

Authors

P F Franck, E M Bevers, B H Lubin, P Comfurius, D T Chiu, J A Op den Kamp, R F Zwaal, L L van Deenen, B Roelofsen

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts