Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Feline glucose-6-phosphate dehydrogenase cellular mosaicism. Application to the study of retrovirus-induced pure red cell aplasia.
J L Abkowitz, … , P J Fialkow, J W Adamson
J L Abkowitz, … , P J Fialkow, J W Adamson
Published January 1, 1985
Citation Information: J Clin Invest. 1985;75(1):133-140. https://doi.org/10.1172/JCI111665.
View: Text | PDF
Research Article

Feline glucose-6-phosphate dehydrogenase cellular mosaicism. Application to the study of retrovirus-induced pure red cell aplasia.

  • Text
  • PDF
Abstract

Neoplasms result from the uncontrolled proliferation of abnormal or transformed cells. The early stages of this process are difficult to study because of the lack of sensitive and specific markers of clonal evolution in an experimental system. We have developed a cat model using cellular mosaicism for glucose-6-phosphate dehydrogenase (G-6-PD). Our findings confirm that the structural locus for feline G-6-PD is on the X-chromosome and demonstrate that it is randomly inactivated in somatic cells. Heterozygous cats have balanced ratios of G-6-PD enzyme types in peripheral blood cells and hematopoietic progenitors that remain stable over time. In our initial studies, we used the model to analyze the events surrounding marrow failure experimentally induced by selected strains of feline leukemia virus (FeLV). Two G-6-PD heterozygous cats, one F1 male hybrid and one domestic cat were infected with FeLV (C or KT) and developed pure red cell aplasia (PRCA). Colonies arising from the more mature erythroid colony-forming cell were not detected in marrow culture of anemic animals although erythroid bursts persisted, suggesting that the differentiation of early erythroid progenitors (BFU-E) was inhibited in vivo. The ratio of G-6-PD types in hematopoietic progenitors and peripheral blood cells from the heterozygous cats did not change when the animals developed PRCA. Thus, the anemia did not result from the clonal expansion of a transformed myeloid stem cell. With this experimental approach, one may prospectively assess clonal evolution and cellular interactions in other FeLV-induced diseases.

Authors

J L Abkowitz, R L Ott, J M Nakamura, L Steinmann, P J Fialkow, J W Adamson

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts