Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects.
C J Packard, … , A M Gotto, J Shepherd
C J Packard, … , A M Gotto, J Shepherd
Published December 1, 1984
Citation Information: J Clin Invest. 1984;74(6):2178-2192. https://doi.org/10.1172/JCI111644.
View: Text | PDF
Research Article

Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects.

  • Text
  • PDF
Abstract

The metabolic fate of very low density lipoprotein can be examined by following the transit of its apolipoprotein B moiety through the delipidation cascade, which leads to low density lipoprotein. In this study we have used cumulative flotation ultracentrifugation to follow the metabolism of various lipoprotein subclasses that participate in this process in normal, hypertriglyceridemic (Type IV), and dysbetalipoproteinemic (Type III) subjects. Large triglyceride-rich very low density lipoproteins of Svedberg units of flotation (Sf) 100-400 were converted virtually quantitatively in normal subjects to smaller Sf 12-100 remnant particles. Only a minor fraction appeared thereafter in low density lipoproteins (Sf 0-12), most being removed directly from the plasma. Type IV hyperlipoproteinemic individuals converted the larger Sf 100-400 very low density lipoproteins to intermediate particles at approximately 50% of the control rate but thereafter their metabolism was normal (fractional clearance of Sf 12-100 particles in controls, 1.29 +/- 0.23 pools/d; in Type IV hypertriglyceridemics, 1.38 +/- 0.23 pools/d; n = 4 in each case). Since the apolipoprotein B in large triglyceride-rich particles did not contribute significantly to the mass of the low density lipoprotein apoprotein pool, the latter must come largely from another source. This was examined by following the metabolic fate of small very low density lipoproteins of Sf 20-60 or of the total lipoprotein spectrum of d less than 1.006 kg/liter (approximate Sf 20-400). The small particles were rapidly and substantially converted to low density lipoproteins, suggesting that the major precursor of the latter was to be found in this density range. Whereas only 10% of apolipoprotein B in Sf 100-400 lipoproteins reached the low density lipoprotein flotation range, greater than 40% of Sf 20-100 B protein eventually appeared in Sf 0-12 particles; and when very low density lipoprotein of d less than 1.006 kg/liter is used as a tracer of apolipoprotein B metabolism it is primarily this population of small very low density lipoprotein particles in the Sf 12-100 flotation range that is labeled. A detailed examination was made of apolipoprotein B metabolism in three dysbetalipoproteinemic subjects. The plasma clearance curves of their Sf 100-400 lipoproteins were distinctly biphasic. The quickly decaying component converted rapidly into remnants of Sf 20-60 at a near normal rate (0.56 vs. 0.62 pools/d in normal subjects). Its subsequent processing, however, was retarded. The more slowly catabolized fraction, comprising 30% of the total apolipoprotein B radioactivity, had no counterpart in normal or Type IV hyperlipoproteinemic individuals. These data, taken together, suggest that the very low density lipoprotein consists of a complex mixture of particles with different origins and fates. Within the Sf 20-100 flotation range there are at least two subcomponents. One represents remnants of larger triglyceride-rich particles which are catabolized slowly and feeds little apolipoprotein B into low density lipoprotein. The other is apparently secreted directly into this flotation interval and transfers significant amounts of B protein rapidly into Sf 0-12 lipoproteins.

Authors

C J Packard, A Munro, A R Lorimer, A M Gotto, J Shepherd

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts