Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Membrane-bound hemagglutinin mediates antibody and complement-dependent lysis of influenza virus-treated human platelets in autologous serum.
M D Kazatchkine, C R Lambré, N Kieffer, F Maillet, A T Nurden
M D Kazatchkine, C R Lambré, N Kieffer, F Maillet, A T Nurden
View: Text | PDF
Research Article

Membrane-bound hemagglutinin mediates antibody and complement-dependent lysis of influenza virus-treated human platelets in autologous serum.

  • Text
  • PDF
Abstract

Influenza A virus-treated human platelets were lyzed in autologous serum. Lysis required the presence of antibody and occurred predominantly through activation of the classical complement pathway. Binding of the virus followed by its elution at 37 degrees C resulted in a dose-dependent desialation of the cells with a maximal release of 45% of total platelet sialic acid. In contrast, platelets that had been treated with Vibrio cholerae neuraminidase and from which 55% of total sialic acid had been removed were not lyzed in autologous serum and did not bind C3 as shown in binding assays using radiolabeled monoclonal anti-C3 antibody. Thus, the immune-mediated lysis of virus-treated platelets in autologous serum did not involve neoantigens expressed by desialated cells. To assess the effect of viruses on the platelet surface, treated platelets were incubated with galactose oxidase and sodium [3H]borohydride prior to separation and analysis of the labeled glycoproteins by SDS-PAGE. Viral treatment resulted in a desialation of each of the surface glycoproteins. At the same time, a labeled component of Mr 72,000 (nonreduced) and Mr 55,000 (reduced) was observed that was not present when V. cholerae-desialated platelets were examined in the same way. Immunoblotting experiments performed using antiwhole virus and anti-hemagglutinin antibodies demonstrated this component to be viral hemagglutinin. Involvement of membrane-bound hemagglutinin in antibody and in complement-mediated lysis of virus-treated platelets in autologous serum was supported by the increased lytic activity of a postvaccinal serum containing an elevated titer of complement fixing anti-hemagglutinin antibodies. Binding of a viral protein to the platelet surface provides a model for immune thrombocytopenias occurring during acute viral infections at the time of the specific immune response.

Authors

M D Kazatchkine, C R Lambré, N Kieffer, F Maillet, A T Nurden

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts