Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Ammonia production by individual segments of the rat nephron.
D W Good, M B Burg
D W Good, M B Burg
Published March 1, 1984
Citation Information: J Clin Invest. 1984;73(3):602-610. https://doi.org/10.1172/JCI111250.
View: Text | PDF
Research Article

Ammonia production by individual segments of the rat nephron.

  • Text
  • PDF
Abstract

Ammonia production was measured directly in 10 segments of the rat nephron to determine the relative importance of the segments as sites of renal ammonia production. Tubules were microdissected from normal rats and rats drinking 0.28 M NH4Cl or 0.28 M NaHCO3 for 3-8 d. The segments were incubated in vitro with and without 2 mM glutamine. Ammonia concentrations in the incubation fluid were measured by microfluorometry to determine ammonia production rates. All segments produced ammonia from glutamine. In normal rats, production with glutamine was highest (greater than 5 pmol/min per mm) in the proximal convoluted (S-1), proximal straight (S-3), and distal convoluted tubules, and lowest (less than or equal to 2) in cortical and medullary collecting ducts and thin descending limbs. Metabolic acidosis increased production by 60% in the S-1 segment of the proximal convoluted tubule and by 150% in the S-2 segment of the proximal straight tubule without significant effect in any other segment. Bicarbonate loading decreased production by S-1 but had no effect on S-2 or S-3. Thus, acid-base changes altered production only in specific segments of the proximal tubule. We infer that the bulk of ammonia production occurs in the proximal tubules and that production by collecting ducts can account for only a few percent of renal ammonia production and excretion in the rat.

Authors

D W Good, M B Burg

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts