Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Defective binding of macrophages to bone in rodent osteomalacia and vitamin D deficiency. In vitro evidence for a cellular defect and altered saccharides in the bone matrix.
Z Bar-Shavit, … , A J Kahn, S L Teitelbaum
Z Bar-Shavit, … , A J Kahn, S L Teitelbaum
Published August 1, 1983
Citation Information: J Clin Invest. 1983;72(2):526-534. https://doi.org/10.1172/JCI111000.
View: Text | PDF
Research Article

Defective binding of macrophages to bone in rodent osteomalacia and vitamin D deficiency. In vitro evidence for a cellular defect and altered saccharides in the bone matrix.

  • Text
  • PDF
Abstract

In the osteomalacic as well as normal skeleton, few osteoclasts are associated with osteoid-covered bone surfaces. The reason for this particular cellular deficit is not clear, but may relate to the inability of osteoclasts and/or osteoclast precursors (monocyte-macrophages) to attach to immature, unmineralized bone matrix, a step apparently essential for normal resorptive activity and osteoclast differentiation. In this study, we have examined cell-bone binding using macrophages (M phi) and bone isolated from vitamin D-deficient rats and hypophosphatemic, osteomalacic mice and from their normal counterparts. The data show that M phi-bone attachment is greatly reduced (P less than 0.001) in both vitamin D deficiency and hypophosphatemia, but that the mechanisms responsible for this reduction are apparently different in the two disorders. In hypophosphatemia, the reduction in binding appears solely attributable to the absence or inaccessibility of bone matrix oligosaccharides or glycoproteins essential to the attachment process. In vitamin D deficiency, on the other hand, not only is the bone matrix defective as a binding substrate, but the M phi, per se, is limited in its capacity to attach to normal, vitamin D-deficient, and hypophosphatemic bone.

Authors

Z Bar-Shavit, A J Kahn, S L Teitelbaum

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts