Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect.
D K Stone, D W Seldin, J P Kokko, H R Jacobson
D K Stone, D W Seldin, J P Kokko, H R Jacobson
View: Text | PDF
Research Article

Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect.

  • Text
  • PDF
Abstract

Rabbit medullary collecting duct (MCD) from inner stripe of outer medulla has been identified as a major distal nephron acidification site. The isolated, perfused tubule technique was used to examine the roles of mineralocorticoid and glucocorticoid in regulation of MCD acidification. Surgical adrenalectomy reduced bicarbonate reabsorptive rate (JHCO3, pmol X mm-1 X min-1) from the normal of 9.79 +/- 1.21 to 0.67 +/- 1.1. Chronic administration of deoxycorticosterone acetate (DOCA) increased JHCO3 of MCD significantly to 18.02 +/- 1.62 whereas chronic dexamethasone administration did not affect JHCO3. The direct effects of aldosterone and dexamethasone upon MCD acidification were examined by perfusing tubules harvested from adrenalectomized rabbits in the presence of aldosterone or dexamethasone. Aldosterone, at 5 X 10(-8) M, increased JHCO3 significantly from 1.27 +/- 0.28 to 3.09 +/- 0.34. At 10(-6) M, aldosterone produced a greater increase in JHCO3 from 0.67 +/- 1.1 to 9.39 +/- 1.59. In vitro dexamethasone treatment had no effect on JHCO3. Studies examining the sodium dependence of aldosterone-stimulated acidification demonstrated that JHCO3 in tubules harvested from normal and deoxycorticosterone acetate-treated animals was unaffected by total replacement of sodium with tetramethylammonium. Likewise, luminal amiloride (5 X 10(-5) M) had no effect on JHCO3 in tubules harvested from adrenalectomized and normal animals. Moreover, the acute, in vitro stimulatory effect of aldosterone was seen to occur in the presence of luminal amiloride. These studies define a mammalian distal nephron segment that possesses major acidifying capacity, which is modulated by mineralocorticoid but independent of luminal sodium.

Authors

D K Stone, D W Seldin, J P Kokko, H R Jacobson

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts