Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Deficiency of carbonic anhydrase in the vasculature of rabbit kidneys.
R M Effros, S Nioka
R M Effros, S Nioka
Published May 1, 1983
Citation Information: J Clin Invest. 1983;71(5):1418-1430. https://doi.org/10.1172/JCI110895.
View: Text | PDF
Research Article

Deficiency of carbonic anhydrase in the vasculature of rabbit kidneys.

  • Text
  • PDF
Abstract

The transit of 14CO2 and H14CO3- through the renal vasculature was studied in rabbit kidneys perfused without erythrocytes and in an in vivo preparation in which erythrocytes were present. In the absence of erythrocytes, the transit of 14CO2 from the renal artery to renal vein was much more rapid than that of H14CO3-. This suggests that (a) there is insufficient carbonic anhydrase (c.a.) in the vasculature between the renal artery and the exchange vessels of the kidney to ensure equilibration between CO2 and HCO3- and (b) CO2 can diffuse directly between arterial and venous vessels in the kidney. Following infusions of carbonic anhydrase, the renal venous outflow patterns of 14CO2 and H14CO3- became the same in the perfused kidneys. Although the initial recovery of 14CO2 remained greater than that of H14CO3- after infusions of acetazolamide (a c.a. inhibitor), arteriovenous diffusion of 14CO2 was diminished by this agent. This is attributed to inhibition of renal tubular c.a. The outflow patterns of H14CO3- and 14CO2 were nearly the same in the presence of erythrocytes, indicating that erythrocyte c.a. is sufficiently accessible to permit virtual equilibration of these radionuclides during the interval required for transit between the renal artery and exchange vessels. However, addition of carbonic anhydrase to the plasma seemed to accelerate transit of both 14CO2 and H14CO3- through the kidneys, and a small disequilibrium between CO2 and HCO3- may therefore normally be present in the renal interstitium and capillaries.

Authors

R M Effros, S Nioka

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts