Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Phagocytosing human neutrophils inactivate their own granular enzymes.
A A Voetman, … , A A Bot, D Roos
A A Voetman, … , A A Bot, D Roos
Published May 1, 1981
Citation Information: J Clin Invest. 1981;67(5):1541-1549. https://doi.org/10.1172/JCI110185.
View: Text | PDF
Research Article

Phagocytosing human neutrophils inactivate their own granular enzymes.

  • Text
  • PDF
Abstract

During phagocytosis, neutrophils generate reactive oxygen metabolites and release lysosomal enzymes into the extracellular medium. We have investigated the possibility that these enzyme are inactivated by the oxygen compounds. Phagocytosing neutrophils from 12 patients with chronic granulomatous disease, which do not generate these oxygen metabolites, released two to three times more activity of lysozyme and beta-glucuronidase than did normal neutrophils. This difference proved to be due to a decrease of approximately 20% of the total activity of these enzymes in normal neutrophils, but not in neutrophils of patients with chronic granulomatous disease. This inactivation of enzymes took place during phagocytosis of opsonized zymosan particles as well as during stimulation of normal cells with phorbol myristate acetate. The inactivation was not due to formation of inhibitors. The lysosomal enzymes were not activated when the neutrophils were stimulated under anaerobic conditions. Addition of catalase, superoxide dismutase, or albumin gave no protection against the oxidative damage; reduced glutathione gave partial protection. The oxidative inactivation was more pronounced in the presence of azide. Measurement of the activity and the amount of protein of acid alpha-glucosidase in the cells showed that the specific activity of this enzyme decreased by approximately 50% during 30 min of phagocytosis. This indicates that the inactivation of the lysosomal enzymes takes place in the phagolysosomes, before the enzymes have leaked into the extracellular medium.

Authors

A A Voetman, R S Weening, M N Hamers, L J Meerhof, A A Bot, D Roos

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts