Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Cobalamin malabsorption due to nondegradation of R proteins in the human intestine. Inhibited cobalamin absorption in exocrine pancreatic dysfunction.
G Marcoullis, … , M Jimenez, P Gerard
G Marcoullis, … , M Jimenez, P Gerard
Published September 1, 1980
Citation Information: J Clin Invest. 1980;66(3):430-440. https://doi.org/10.1172/JCI109873.
View: Text | PDF
Research Article

Cobalamin malabsorption due to nondegradation of R proteins in the human intestine. Inhibited cobalamin absorption in exocrine pancreatic dysfunction.

  • Text
  • PDF
Abstract

In vivo studies demonstrate that the pancreatic enzymes and the ionic environment in the upper gastrointestinal tract are essential determining factors for transport and absorption of cobalamin in man. Jejunal fluid was aspirated from healthy human volunteers after administration of cyano[57Co]cobalamin preparations. Immunochemical analysis of the aspirates demonstrated that all isotopic vitamin was transferred to a protein that is identical to the gastric intrinsic factor in terms of molecular mass (57,500), ionic nature (mean pI, 5.09), and reactivity with anti-intrinsic factor sera. However, in the aspirates from patients with exocrine pancreatic dysfunction the vitamin was found to be coupled > 60% to a protein identical to R proteins in terms of molecular mass (125,000), ionic nature (mean pI, 3.51), and reactivity with anti-R protein and anti-intrinsic factor sera. The preferential transfer of cobalamin to R proteins in the patients and to intrinsic factor in healthy subjects was associated, respectively, with low and normal levels of pancreatic enzymes in the intestine and these in turn were paralleled respectively by impaired and normal ileal absorption of cobalamin. These findings confirm the suggestion that the formation of unabsorbable cobalamin complexes may be the reason of impaired vitamin absorption in exocrine pancreatic insufficiency. Observations made with other selected patients demonstrate: (a) that decreased enzyme activity and nondegradation of R proteins may also be due to nonactivation of pancreatic zymogens in an acidic pH of the intestinal juice the vitamin transported to the jejunum couples to intrinsic factor when pancreatic function is normal, and to intrinsic factor and R protein in exocrine pancreatic insufficiency. The observations made with these selected patients may explain why not all patients with exocrine pancreatic insufficiency develop imparied cobalamin absorption, and also why the malabsorption is corrected by the administration of bicarbonate in certain patients.

Authors

G Marcoullis, Y Parmentier, J P Nicolas, M Jimenez, P Gerard

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts