Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Amino acid modulation of renal phosphatidylcholine biosynthesis in the rat.
L J Havener, F G Toback
L J Havener, F G Toback
Published March 1, 1980
Citation Information: J Clin Invest. 1980;65(3):741-745. https://doi.org/10.1172/JCI109721.
View: Text | PDF
Research Article

Amino acid modulation of renal phosphatidylcholine biosynthesis in the rat.

  • Text
  • PDF
Abstract

The hypothesis that amino acids act as modifiers of phospholipid biosynthesis was tested in renal cortical cells from normal rats. The rate of [14C]-choline incorporation into phospholipid in cortical slices was enhanced by the addition of lysine or arginine to the incubation medium, and reduced by phenylalanine, aspartic acid, or four other amino acids. Lysine and aspartic acid appeared to modify the cholinephosphotransferase reaction in which cytidine 5'-diphosphocholine (CDP-choline) and 1,2-diacylglycerol react to form phosphatidylcholine, the major phospholipid of renal membranes. Since this enzymatic reaction takes place in the endoplasmic reticulum, the effect of single amino acids on microsomal preparations was examined. Lysine increased CDP-choline:1,2-diacylglycerol cholinephosphotransferase activity by 95%, whereas aspartic acid reduced activity by 65%, in a concentration-dependent manner. For both substrates in the reaction, amino acids modulated enzyme activity by altering the maximum velocity without changing the apparent Km. These observations in intact renal cells and in microsomal preparations indicate that changes in cellular amino acid concentrations could modify the biosynthetic rate of phosphatidylcholine, and suggest a mechanism that could coordinate the biosynthesis of phospholipid and protein.

Authors

L J Havener, F G Toback

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts