Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Direct Radioimmunoassay of Nuclear 3,5,3′ Triiodothyronine in Rat Anterior Pituitary
P. R. Larsen, S. Z. Bavli, M. Castonguay, R. Jove
P. R. Larsen, S. Z. Bavli, M. Castonguay, R. Jove
View: Text | PDF
Research Article

Direct Radioimmunoassay of Nuclear 3,5,3′ Triiodothyronine in Rat Anterior Pituitary

  • Text
  • PDF
Abstract

Previous tracer studies have suggested that 5′-monodeiodination of l-thyroxine (T4) in anterior pituitary may contribute a substantial portion of specifically bound nuclear 3,5,3′ l-triiodothyronine (T3) in this tissue in rats. To evaluate this possibility, a radioimmunoassay for nuclear T3 in individual anterior pituitaries was developed. Animals received [125I]T3 60 min before removal of the anterior pituitary and isolation of the nuclei by differential centrifugation. This allowed calculation of the nuclear:serum T3 ratio and comparison of expected with measured T3. T3 was extracted in ethanol, dried, and reconstituted in assay buffer. In untreated hypothyroid rats, anterior pituitary nuclear T3 was 0.18 ± 0.06 pg/μg DNA which was 0.13 pg/μg DNA greater than expected from the serum T3 concentration and the pituitary nuclear:serum [125I]T3 ratio. In 10 hypothyroid rats given a single bolus of 400 ng T3/100 g body wt., the nuclear T3 by radioimmunoassay was 1.0 ± 0.06 pg/μg DNA, whereas that expected from the T3 specific activity calculations was 0.85 pg/μg DNA (P < 0.025). Serum T4 concentrations in these rats were < 0.25 μg/dl but the nuclear T3 derived from as little as 0.2 μg/dl T4 could explain a large portion of these small discrepancies between observed and measured nuclear T3. In 29 normal rats, anterior pituitary nuclear T3 was 0.63±0.04 pg/μg DNA, whereas that expected from the serum T3 concentration (55±2 ng/dl) was 0.23±0.02 pg/μg DNA (P < 0.001). Total pituitary T3 based on this measurement was 92±6 pg. Because the maximal nuclear binding capacity for T3 in rat anterior pituitary is 0.77 pg/μg DNA, these results suggest there is 82% occupancy of these nuclear receptors. The requirement for normal serum concentrations of both T4 and T3 to achieve normal nuclear T3 saturation in anterior pituitary is in marked contrast to the situation in liver, kidney, and heart muscle which appear to require only a normal serum T3. As a consequence, the anterior pituitary can monitor both serum T4 and T3 and respond appropriately to changes in their concentrations.

Authors

P. R. Larsen, S. Z. Bavli, M. Castonguay, R. Jove

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts