Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Increased surface tension favors pulmonary edema formation in anesthetized dogs' lungs.
R K Albert, … , W Kirk, J Butler
R K Albert, … , W Kirk, J Butler
Published May 1, 1979
Citation Information: J Clin Invest. 1979;63(5):1015-1018. https://doi.org/10.1172/JCI109369.
View: Text | PDF
Research Article

Increased surface tension favors pulmonary edema formation in anesthetized dogs' lungs.

  • Text
  • PDF
Abstract

The possibility that surface tension may affect the hydrostatic transmural pressure of pulmonary vessels and the development of pulmonary edema was studied in anesthetized, open-chested dogs. Isogravimetric pressure (the static intravascular pressure at which transmural osmotic and hydrostatic pressures are balanced such that net fluid flux is zero and lung weight is constant) was measured in nine animals under three conditions: (a) control, normal surface tension, at an alveolar pressure of 30 cm H2O with the apenic lung at room temperature; (b) after increasing surface tension by cooling and ventilating at a low functional residual capacity, at an alveolar pressure sufficient to produce the same lung volume present during control measurements; and (c) after restoring surface tension by rewarming while holding the lung at a high inflation volume, again at the control lung volume. Lung volumes were established from external dimensions and confirmed +/- 10% by deflation spirometry. The isogravimetric pressure (relative to alveolar pressure) was significantly less with increased surface tension than during either the initial control condition (P less than 0.01), or when the surface tension has been restored (P less than 0.01). Similar changes occurred in each of three additional studies performed with control alveolar pressures of 10 cm H2O. Thus, increased surface tension favors fluid leakage presumably because it increases the microvascular transmural pressure.

Authors

R K Albert, S Lakshminarayan, J Hildebrandt, W Kirk, J Butler

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts