Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Interaction of collagen with the lipids of tendon xanthomata.
A R Tall, … , D M Small, R S Lees
A R Tall, … , D M Small, R S Lees
Published October 1, 1978
Citation Information: J Clin Invest. 1978;62(4):836-846. https://doi.org/10.1172/JCI109196.
View: Text | PDF
Research Article

Interaction of collagen with the lipids of tendon xanthomata.

  • Text
  • PDF
Abstract

To determine the physical state of lipids in tendon xanthomata, six specimens surgically removed from three patients with familial hypercholesterolemia were studied by microscopy, calorimetry, and x-ray diffraction. The major constituents of the xanthomata were lipid (33% of dry weight) and collagen (24% of dry weight). The principal lipids were cholesterol ester and cholesterol. Light microscopy and thin-section electron microscopy showed occasional clusters of foam cells separated by masses of extracellular collagen. Polarized light microscopy of fresh, minced tissue showed rare droplets of free cholesterol ester. When heated, the tissue shrank abruptly at approximately equal to 70 degrees C and, consequently, a large amount of cholesterol ester was released. Scanning calorimetry of fresh pieces of xanthoma showed a single, broad, reversible liquid crystalline transition of cholesterol ester with peak temperature from 32 to 38 degrees C. The enthalpy (0971 +/- 0.07 cal/g) was reduced compared with the isolated cholesterol ester from each xanthoma (1.1+/-0.01 cal/g). There was a large irreversible collagen denaturation endotherm (peak temperature = 67 degrees C; enthalpy 9.9 cal/g collagen) that corresponded to the tissue shrinkage noted by microscopy. After the collagen denaturation, the sample displayed double-peaked reversible liquid crystalline transitions of cholesterol ester, of enthalpy 1.18 +/- 0.1 cal/g, that were identical to transitions of isolated cholesterol ester. Fibers dissected fron xanthomata were examined by X-ray diffraction at temperatures below and above the cholesterol ester transition. At 20 degrees C there was a weakly oriented equatorial reflection of Bragg spacing 36A, which corresponded to the smectic phase of cholesterol ester, and a series of oriented collagen reflections. At 42 degrees C the cholesterol ester reflection disappeared. Stretched fibers examined at 10 degrees C showed good orientation of collagen and cholesterol ester reflections, and in addition, meridional spacings which indicated oriented crystallization of cholesterol ester. These studies suggest that a major component of tendon xanthomata is extracellular cholesterol ester which displays altered melting and molecular orientation as a result of an interaction with collagen. At xanthoma temperatures, the cholesterol ester is in a smectic liquid crystalline state, probably layered between collagen fibrils, with the long axis of the cholesterolester molecules perpendicular to the axis of the collagen fiber. Such collagen-cholesterol ester interactions may favor the extracellular deposition of cholesterol ester derived either from intracellular sources or directly from plasma lipoproteins.

Authors

A R Tall, D M Small, R S Lees

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts