Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Long-Term Regulation of Adipocyte Glucose Transport Capacity by Circulating Insulin in Rats
Masashi Kobayashi, Jerrold M. Olefsky
Masashi Kobayashi, Jerrold M. Olefsky
Published July 1, 1978
Citation Information: J Clin Invest. 1978;62(1):73-81. https://doi.org/10.1172/JCI109116.
View: Text | PDF
Research Article

Long-Term Regulation of Adipocyte Glucose Transport Capacity by Circulating Insulin in Rats

  • Text
  • PDF
Abstract

We have tested the idea that the circulating plasma insulin level plays an important role in the long-term regulation, or maintenance, of the cellular glucose transport system, distinct from insulin's ability to acutely accelerate glucose transport. To study this hypothesis, groups of rats were made either hyperinsulinemic or hypoinsulinemic by daily insulin injections, or streptozotocin treatment, respectively. Different levels of hypoinsulinemia were produced by using different doses of streptozotocin (40 and 55 mg/kg). The mean (±SE) 9 a.m. plasma insulin level for each experimental group was: hyperinsulinemic animals, 65±5 μU/ml; controls, 32±3 μU/ml; low dose streptozotocin group, 18±3 μU/ml; and high dose streptozotocin group 5±2 μU/ml. Isolated adipocytes were prepared from each animal and glucose transport was assessed by measuring the initial rates of uptake of the nonmetabolyzable hexose 2-deoxy glucose. The Vmax and Km values for adipocyte glucose transport were calculated from the 2-deoxy glucose uptake data. The results demonstrated that in cells from control animals the Vmax of in vitro adipocyte glucose transport was 7.1±0.7 nmol/min per 106 cells in the basal state and 22.9±0.9 nmol/min per 106 cells in the presence of a maximally effective insulin concentration (25 ng/ml) in the buffer. In cells from the experimentally hyperinsulinemic animals these Vmax values were increased to 11.7±0.8 and 44.2±1.1 nmol/min per 106 cells. Using adipocytes from both groups of streptozotocin-treated (high dose, 55 mg/kg; low dose, 40 mg/kg) insulin-deficient diabetic animals, Vmax values were found to be progressively decreased. Thus, in the low dose group, basal-and insulin-stimulated Vmax values were 1.6±0.5 and 5.7±0.7 nmol/min per 106 cells, as compared to values of 0.9±0.2 and 1.7±0.6 in the high dose group. Thus, when considered as group data a positive relationship was found between circulating plasma insulin levels and adipocyte glucose transport Vmax, with increased Vmax values in hyperinsulinemic rats and decreased Vmax values in hypoinsulinemic rats. Furthermore, when the individual data were analyzed, highly significant correlation coefficients were found between the height of the plasma insulin level and both the basal (r = 0.82, P < 0.001) and insulin-stimulated (r = 0.93, P < 0.001) Vmax values. The apparent Km for 2-deoxy glucose uptake was the same under all conditions.

Authors

Masashi Kobayashi, Jerrold M. Olefsky

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts