Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes.
E N Metz, … , P Balcerzak, A L Sagone Jr
E N Metz, … , P Balcerzak, A L Sagone Jr
Published October 1, 1976
Citation Information: J Clin Invest. 1976;58(4):797-802. https://doi.org/10.1172/JCI108531.
View: Text | PDF
Research Article

Mechanisms of methylene blue stimulation of the hexose monophosphate shunt in erythrocytes.

  • Text
  • PDF
Abstract

The response of the hexose monophosphate shunt in erythrocytes was studied with the ionization chamber-electrometer apparatus to measure continuously 14CO2 derived from 14C-labeled substrates. The effect of methylene blue at high (0.1 mM) and low (1 muM) concentrations was evaluated under different gas mixtures; air, carbon monoxide, and 6% carbon monoxide in air. The latter gas mixture results in nearly 100% carboxyhemoglobin but provides a physiologic partial pressure of oxygen. The extent to which pentose is recycled through the shunt in response to methylene blue stimulation was examined with radioactive glucose substrates labeled on the first, second, and third carbon positions. Generation of hydrogen peroxide after stimulation of erythrocytes with methylene blue was evaluated by the catalase-aminotriazole trapping technique, [14C]formate oxidation, and oxidation of reduced glutatione. Stimulation of the shunt with 1 muM methylene blue was markedly impaired in the absence of oxyhemoglobin, but stimulation with 0.1 mM methylene blue was only slightly impaired under the carbon monoxide-air mixture. The higher concentration of methylene blue produced evidence of hydrogen peroxide generation of all three techniques. Despite the evidence for the involvement of oxygen, oxyhemoglobin, and hydrogen peroxide in the response to methylene blue, cells containing methemoglobin induced by sodium nitrite or from a patient with congenital methemoglobinemia responded normally to methylene blue in the absence of oxygen. These experiments indicate that the reactions induced by methylene blue in erythrocytes are more complex than generally thought and that high concentrations are associated with production of peroxide.

Authors

E N Metz, P Balcerzak, A L Sagone Jr

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts