Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Dihydrotestosterone binding by cultured human fibroblasts. Comparison of cells from control subjects and from patients with hereditary male pseudohermaphroditism due to androgen resistance.
J E Griffin, … , K Punyashthiti, J D Wilson
J E Griffin, … , K Punyashthiti, J D Wilson
Published May 1, 1976
Citation Information: J Clin Invest. 1976;57(5):1342-1351. https://doi.org/10.1172/JCI108402.
View: Text | PDF
Research Article

Dihydrotestosterone binding by cultured human fibroblasts. Comparison of cells from control subjects and from patients with hereditary male pseudohermaphroditism due to androgen resistance.

  • Text
  • PDF
Abstract

Dihydrotestosterone binding was measured in culture fibroblasts from 14 control subjects and from 12 patients with five different types of hereditary male pseudohermaphroditism. Two assays of binding were used--an intact monolayer assay and density gradient centrifugation of cell extracts. In the intact monolayer assay of normal cells the uptake of [3H]dihydrotestosterone consisted of two components. The first was a high affinity component that exhibited saturation at approximately 1 nM dihydrotestosterone. The second was a low affinity component that was not saturable with concentrations of steroid up to 5 nM. Twice the number of high affinity binding sites were present in fibroblasts grown from genital skin (foreskin, labia majora, and scrotum) as from nongenital sites (37 vs. 14 fmol/mg protein). In the density gradient assay in 5-10% sucrose, the major peak of dihydrotestosterone binding was in the 8S region in low molarity buffer and in the 4S region in 0.5 M KCl. High affinity binding was normal in cells from two patients with familial incomplete male pseudohermaphroditism, type 2, an autosomal recessive defect in which dihydrotestosterone formation is deficient, and in cells from a patient with male pseudohermaphroditism due to 17 beta-hydroxysteroid dehydrogenase deficiency, an autosomal recessive defect of testosterone synthesis. High affinity binding was low by both methods in fibroblasts from five patients with complete testicular feminization. Furthermore, binding by both methods was also low in cells from three subjects with familial incomplete male pseudohermaphroditism, type 1, a presumed X-linked recessive disorder of androgen resistance, and in fibroblasts grown from a subject with the incomplete form of testicular feminization. The finding that dihydrotestosterone binding is abnormal in two forms of hereditary androgen resistance in addition to complete testicular feminization suggests either that these disorders are the result of allelic mutations affecting the function of the androgen-binding protein or that normal dihydrotestosterone binding requires the participation of more than one gene product.

Authors

J E Griffin, K Punyashthiti, J D Wilson

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts