Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Resting Membrane Potential and Ionic Distribution in Fast- and Slow-Twitch Mammalian Muscle
David S. Campion
David S. Campion
Published September 1, 1974
Citation Information: J Clin Invest. 1974;54(3):514-518. https://doi.org/10.1172/JCI107787.
View: Text | PDF
Research Article

Resting Membrane Potential and Ionic Distribution in Fast- and Slow-Twitch Mammalian Muscle

  • Text
  • PDF
Abstract

The resting membrane potential and intracellular potassium and sodium concentration of three guinea pig hind limb muscles were studied. These properties are related to the gross color, the speed of contraction, and the biochemically defined fiber type composing the muscle. The resting membrane potential and intracellular content were: white vastus (grossly white, fast-twitch glycolytic) -85.3 mV. potassium 171.9 meq/liter; soleus (grossly red, slow-twitch oxidative) -69.7 mV, potassium 137.5 meq/liter; and red vastus lateralis (grossly red, fast-twitch oxidative glycolytic) -71.7 mV, potassium 139.6 meq/liter. In soleus and red vastus lateralis, the relative permeability of sodium to potassium was 0.041 and 0.036, while in white vastus it was 0.015. These results give us the first exception to the hypothesis that fast-twitch fibers have higher intracellular potassium and higher resting membrane potential than slow-twitch fibers.

Authors

David S. Campion

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts