Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Glucose reabsorption from bile. Evidence for a biliohepatic circulation.
P Guzelian, J L Boyer
P Guzelian, J L Boyer
Published February 1, 1974
Citation Information: J Clin Invest. 1974;53(2):526-535. https://doi.org/10.1172/JCI107586.
View: Text | PDF
Research Article

Glucose reabsorption from bile. Evidence for a biliohepatic circulation.

  • Text
  • PDF
Abstract

Glucose is absent from human bile and present in low concentrations in bile from the rat. To study the mechanisms of this blood-bile glucose concentration difference, infusions of glucose were administered i.v. to 300-400 g male Sprague-Dawley rats with ligated renal pedicles and to two postcholecystectomy patients with indwelling t-tubes. Glucose was assayed in plasma, bile, and rat liver by a hexokinase method specific for D-glucose. In man, glucose was detected in bile when plasma glucose increased above 350 mg/100 ml. In animals studies, low concentrations of bile glucose were observed at plasma levels between 100 and 300 mg/100 ml. However, when plasma concentrations increased between 400 and 900 mg/100 ml, glucose appeared more rapidly in bile, defining by extrapolation an apparent plasma glucose threshold of 280 mg/100 ml. Intraportal phlorizin, a competitive inhibitor of glucose transport, significantly increased bile glucose concentrations. Plasma-bile concentration differences were also observed in rats after i.v. [3-14C]O-methyl glucose (3-O-MG) but not after [3H]mannitol. Hepatic glucose levels were never lower than plasma levels and liver-plasma 3-O-MG ratios were 0.92 +/- 0.22 indicating that entry of glucose and 3-O-MG into hepatocyte water was not limiting. Furthermore, when sodium dehydrocholate augmented canalicular secretion, biliary glucose excretion increased proportionally suggesting that glucose entry into bile was not impeded. When estimates of hepatic glucose secretion were compared with biliary glucose excretion, the latter increased progressively when estimated secretion rates exceeded 50 micrograms/min or when phlorizin was given. Finally, during bile stop-flow experiments, [3-14C]O-MG and [14C]glucose were selectively removed from bile compared with [3H]mannitol. The findings suggest that glucose and 3-O-MG are reabsorbed from bile after entry at the hepatocyte, accounting for their low bile-plasma ratio. The biliary glucose transport process may be described by Michaelis-Menten kinetics and is analogous to recently defined kinetics for renal tubular reabsorption of glucose. These studies provide evidence that certain products of bile secretion may undergo a "biliohepatic" circulation.

Authors

P Guzelian, J L Boyer

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts