Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Selective reticulocyte destruction in erythrocyte pyruvate kinase deficiency
William C. Mentzer Jr., … , Stephen H. Robinson, David G. Nathan
William C. Mentzer Jr., … , Stephen H. Robinson, David G. Nathan
Published March 1, 1971
Citation Information: J Clin Invest. 1971;50(3):688-699. https://doi.org/10.1172/JCI106539.
View: Text | PDF
Research Article

Selective reticulocyte destruction in erythrocyte pyruvate kinase deficiency

  • Text
  • PDF
Abstract

Radioisotope studies of bilirubin turnover, ferrokinetics, and red cell survival (51Cr) in a patient with erythrocyte PK deficiency have provided evidence for prompt reticulocyte sequestration and destruction by the reticuloendothelial system. More mature erythrocytes appeared to survive well despite their deficiency of PK. PK-deficient reticulocytes, dependent upon oxidative phosphorylation for ATP production, are exquisitely sensitive to cyanide- or nitrogen-induced mitochondrial inhibition. If oxidative phosphorylation is unavailable, ATP levels decline rapidly, producing alterations in the cell membrane which allow massive losses of potassium and water. The result is a shrunken, spiculated, viscous cell whose rheologic properties would favor its sequestration by the reticuloendothelial system. Those reticulocytes with particularly low levels of PK exhibit very low glycolytic rates and thus are uniquely reliant upon oxidative phosphorylation. Other reticulocytes, better endowed with PK activity, can meet the increased ATP requirements of young erythrocytes. Upon reaching maturity, such cells have diminished ATP needs and can, therefore, survive despite their enzyme deficiency.

Authors

William C. Mentzer Jr., Robert L. Baehner, Holger Schmidt-Schönbein, Stephen H. Robinson, David G. Nathan

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts