Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119029

Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development.

J Shen, E Herderick, J F Cornhill, E Zsigmond, H S Kim, H Kühn, N V Guevara, and L Chan

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Shen, J. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Herderick, E. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Cornhill, J. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Zsigmond, E. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Kim, H. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Kühn, H. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Guevara, N. in: PubMed | Google Scholar

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.

Find articles by Chan, L. in: PubMed | Google Scholar

Published November 15, 1996 - More info

Published in Volume 98, Issue 10 on November 15, 1996
J Clin Invest. 1996;98(10):2201–2208. https://doi.org/10.1172/JCI119029.
© 1996 The American Society for Clinical Investigation
Published November 15, 1996 - Version history
View PDF
Abstract

Oxidative modification of LDL increases its atherogenicity, and 15-lipoxygenase (15-LO) has been implicated in the process. To address this issue, we generated transgenic rabbits that expressed 15-LO in a macrophage-specific manner and studied their susceptibility to atherosclerosis development when they were fed a high-fat, high-cholesterol (HFHC) diet (Teklad 0533 rabbit diet 7009 with 10% corn oil and 0.25% cholesterol) for 13.5 wk. Transgenic and nontransgenic rabbits developed similar degrees of hypercholesterolemia and had similar levels of triglyceride, VLDL, LDL, and HDL. Quantitative morphometric analysis of the aortic atherosclerosis indicated that the transgenic animals (n = 19) had significantly smaller lesion areas (9.8+/-6.5%, mean+/-SD) than their littermate controls (n = 14, 17.8+/-15.0%) (P < 0.05). In a subgroup (n = 9) of transgenic rabbits that received the HFHC diet plus the antioxidant N',N '-diphenyl-phenylenediamine (1%), the extent of lesion involvement (9.8+/-7.5%) did not differ from the subgroup (n = 10) that received the regular HFHC diet (9.7+/-5.9%). Since the results were unexpected, we repeated the experiments. Again, we found that the nontransgenic littermates (n = 12) had more extensive lesions (11.6+/-10.6%) than the transgenic rabbits (n = 13; 9.5+/-7.8%), although the difference was not significant. In a third set of experiments, we crossed 15-LO transgenic rabbits with Watanabe heritable hyperlipidemic (WHHL) rabbits and found that the lesion area in the 15-LO transgenic/heterozygous WHHL rabbits (n = 14) was only about one third (7.7+/-5.7%) that found in nontransgenic heterozygous WHHL littermate controls (n = 11, 20.7+/-19.4%) (P < 0.05). These data suggest that overexpression of 15-LO in monocytes/macrophages protects against lipid deposition in the vessel wall during early atherogenesis in these rabbit models of atherosclerosis.

Version history
  • Version 1 (November 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts