Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118917

A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo.

P J French, J H van Doorninck, R H Peters, E Verbeek, N A Ameen, C R Marino, H R de Jonge, J Bijman, and B J Scholte

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by French, P. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by van Doorninck, J. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by Peters, R. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by Verbeek, E. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by Ameen, N. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by Marino, C. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by de Jonge, H. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by Bijman, J. in: PubMed | Google Scholar

Department of Cell Biology, Erasmus University, Rotterdam, The Netherlands.

Find articles by Scholte, B. in: PubMed | Google Scholar

Published September 15, 1996 - More info

Published in Volume 98, Issue 6 on September 15, 1996
J Clin Invest. 1996;98(6):1304–1312. https://doi.org/10.1172/JCI118917.
© 1996 The American Society for Clinical Investigation
Published September 15, 1996 - Version history
View PDF
Abstract

The most prevalent mutation (delta F508) in cystic fibrosis patients inhibits maturation and transfer to the plasma membrane of the mutant cystic fibrosis transmembrane conductance regulator (CFTR). We have analyzed the properties of a delta F508 CFTR mouse model, which we described recently. We show that the mRNA levels of mutant CFTR are normal in all tissues examined. Therefore the reduced mRNA levels reported in two similar models may be related to their intronic transcription units. Maturation of mutant CFTR was greatly reduced in freshly excised oviduct, compared with normal. Accumulation of mutant CFTR antigen in the apical region of jejunum crypt enterocytes was not observed, in contrast to normal mice. In cultured gallbladder epithelial cells from delta F508 mice, CFTR chloride channel activity could be detected at only two percent of the normal frequency. However, in mutant cells that were grown at reduced temperature the channel frequency increased to over sixteen percent of the normal level at that temperature. The biophysical characteristics of the mutant channel were not significantly different from normal. In homozygous delta F508 mice we did not observe a significant effect of genetic background on the level of residual chloride channel activity, as determined by the size of the forskolin response in Ussing chamber experiments. Our data show that like its human homologue, mouse delta F508-CFTR is a temperature sensitive processing mutant. The delta F508 mouse is therefore a valid in vivo model of human delta F508-CFTR. It may help us to elucidate the processing pathways of complex membrane proteins. Moreover, it may facilitate the discovery of new approaches towards therapy of cystic fibrosis.

Version history
  • Version 1 (September 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts