Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114463

Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans.

B A Wolf, R A Easom, M L McDaniel, and J Turk

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Wolf, B. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Easom, R. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by McDaniel, M. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Turk, J. in: JCI | PubMed | Google Scholar

Published February 1, 1990 - More info

Published in Volume 85, Issue 2 on February 1, 1990
J Clin Invest. 1990;85(2):482–490. https://doi.org/10.1172/JCI114463.
© 1990 The American Society for Clinical Investigation
Published February 1, 1990 - Version history
View PDF
Abstract

Recent evidence has suggested that pancreatic islets isolated from rats synthesize 1,2-diacyl-sn-glycerol (DAG) de novo from glucose and that this process may constitute the long-sought link between the metabolism of glucose and the induction of insulin secretion. The cell-permeant diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (200 microM) has been found here to amplify both the first and second phases of insulin secretion from perifused human islets. Measurements of the mass of endogenous DAG in human pancreatic islets by enzymatic and by mass spectrometric methods indicate that levels of 200 microM may be achieved under physiologic conditions. Conversion of [14C]glucose to [14C]DAG has been demonstrated here to occur within 60 s of exposure of rat and human islets to stimulatory concentrations of glucose. This process has been found to be a quantitatively minor contributor to the total islet DAG mass after acute stimulation with glucose, however, and glucose has been found not to induce a rise in total islet DAG content within 20 min of induction of insulin secretion. In contrast to the case with rodent islets, two pharmacologic inhibitors of DAG-induced activation of protein kinase C (staurosporine and sphingosine) have been found not to influence glucose-induced insulin secretion from isolated human islets. These findings indicate that de novo synthesis of DAG from glucose does not participate in acute signal-response coupling in islets.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 482
page 482
icon of scanned page 483
page 483
icon of scanned page 484
page 484
icon of scanned page 485
page 485
icon of scanned page 486
page 486
icon of scanned page 487
page 487
icon of scanned page 488
page 488
icon of scanned page 489
page 489
icon of scanned page 490
page 490
Version history
  • Version 1 (February 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts