Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113409

Antigen CD34+ marrow cells engraft lethally irradiated baboons.

R J Berenson, R G Andrews, W I Bensinger, D Kalamasz, G Knitter, C D Buckner, and I D Bernstein

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Berenson, R. in: JCI | PubMed | Google Scholar

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Andrews, R. in: JCI | PubMed | Google Scholar

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Bensinger, W. in: JCI | PubMed | Google Scholar

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Kalamasz, D. in: JCI | PubMed | Google Scholar

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Knitter, G. in: JCI | PubMed | Google Scholar

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Buckner, C. in: JCI | PubMed | Google Scholar

Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

Find articles by Bernstein, I. in: JCI | PubMed | Google Scholar

Published March 1, 1988 - More info

Published in Volume 81, Issue 3 on March 1, 1988
J Clin Invest. 1988;81(3):951–955. https://doi.org/10.1172/JCI113409.
© 1988 The American Society for Clinical Investigation
Published March 1, 1988 - Version history
View PDF
Abstract

The CD34 antigen is present on 1-4% of human marrow cells including virtually all hematopoietic progenitors detected by in vitro assays. Since the anti-CD34 monoclonal antibody 12-8 reacts with a similar marrow population in baboons, it was possible to test whether this antigen is expressed by stem cells responsible for hematopoietic reconstitution in vivo. CD34+ cells were enriched from marrows of five baboons using avidin-biotin immunoadsorption. After lethal irradiation, the five animals were given 15-27 X 10(6) autologous marrow cells (3.2-4.4 X 10(6) cells/kg) containing 65-91% CD34+ cells. All animals achieved granulocyte counts greater than 1,000/mm3 and platelet counts greater than 20 X 10(3)/mm3 by 13-24 d posttransplant and subsequently developed normal peripheral blood counts. Two additional animals received 184 and 285 X 10(6) marrow cells/kg depleted of CD34+ cells. One animal died at day 29 without engraftment, while the other had pancytopenia for greater than 100 d posttransplant. The data suggest that stem cells responsible for hematopoietic reconstitution are CD34+.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 951
page 951
icon of scanned page 952
page 952
icon of scanned page 953
page 953
icon of scanned page 954
page 954
icon of scanned page 955
page 955
Version history
  • Version 1 (March 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts