Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112360

Metabolic basis of hyperapobetalipoproteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia.

B Teng, A D Sniderman, A K Soutar, and G R Thompson

Find articles by Teng, B. in: JCI | PubMed | Google Scholar

Find articles by Sniderman, A. in: JCI | PubMed | Google Scholar

Find articles by Soutar, A. in: JCI | PubMed | Google Scholar

Find articles by Thompson, G. in: JCI | PubMed | Google Scholar

Published March 1, 1986 - More info

Published in Volume 77, Issue 3 on March 1, 1986
J Clin Invest. 1986;77(3):663–672. https://doi.org/10.1172/JCI112360.
© 1986 The American Society for Clinical Investigation
Published March 1, 1986 - Version history
View PDF
Abstract

The turnover of apolipoprotein B (apo B) in very low density, intermediate density, and low density lipoproteins (VLDL, IDL, and LDL) and in the light and heavy fractions of LDL was determined in seven patients with hyperapobetalipoproteinemia (hyperapo B), six normolipidemic subjects, and five patients with heterozygous familial hypercholesterolemia (FH). After receiving an injection of 125I-VLDL, hyperapo B patients were found to have a higher rate of synthesis of VLDL-apo B than controls (40.1 vs. 21.5 mg/kg per d, P less than 0.05) but a reduced fractional catabolic rate (FCR) (0.230 vs. 0.366/h, P less than 0.01). After receiving an injection of 131I-LDL, hyperapo B patients had higher rates of LDL-apo B synthesis than controls (23.1 vs. 13.0 mg/kg per d, P less than 0.001), as did FH patients (22.7 mg/kg per d). The FCR of LDL was similar in hyperapo B patients and controls (0.386 vs. 0.366/d) but was markedly decreased in FH patients (0.192/d). Most subjects exhibited precursor-product relationships between VLDL and IDL, and all did between IDL and light LDL; an analogous relationship between light and heavy LDL was evident in most hyperapo B patients and controls but not in FH patients. Simultaneous injection of differentially labeled LDL fractions and deconvolution analysis showed increased light LDL synthesis with normal conversion into heavy LDL in hyperapo B, whereas in FH conversion of light LDL was reduced and there was independent synthesis of heavy LDL. These data show that the increased concentration of LDL-apo B in hyperapo B is solely due to increased LDL synthesis, which is secondary to increased VLDL synthesis; in contrast, in FH there is both an increase in synthesis of LDL (which is partly VLDL-independent) and reduced catabolism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 663
page 663
icon of scanned page 664
page 664
icon of scanned page 665
page 665
icon of scanned page 666
page 666
icon of scanned page 667
page 667
icon of scanned page 668
page 668
icon of scanned page 669
page 669
icon of scanned page 670
page 670
icon of scanned page 671
page 671
icon of scanned page 672
page 672
Version history
  • Version 1 (March 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts