Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Multiple articles found

There are multiple articles with that volume and page. Please choose from the following:

Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA.
R Evers, M Kool, L van Deemter, H Janssen, J Calafat, L C Oomen, C C Paulusma, R P Oude Elferink, F Baas, A H Schinkel, P Borst
R Evers, M Kool, L van Deemter, H Janssen, J Calafat, L C Oomen, C C Paulusma, R P Oude Elferink, F Baas, A H Schinkel, P Borst
View: Text | PDF
Research Article

Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA.

  • Text
  • PDF
Abstract

The canalicular (apical) membrane of the hepatocyte contains an ATP-dependent transport system for organic anions, known as the multispecific organic anion transporter (cMOAT). The deduced amino acid sequence of cMOAT is 49% identical to that of the human multidrug resistance- associated protein (MRP) MRP1, and cMOAT and MRP1 are members of the same sub-family of adenine nucleotide binding cassette transporters. In contrast to MRP1, cMOAT was predominantly found intracellularly in nonpolarized cells, suggesting that cMOAT requires a polarized cell for plasma membrane routing. Therefore, we expressed cMOAT cDNA in polarized kidney epithelial MDCK cell lines. When these cells are grown in a monolayer, cMOAT localizes to the apical plasma membrane. We demonstrate that cMOAT causes transport of the organic anions S-(2,4-dinitrophenyl)-glutathione, the glutathione conjugate of ethacrynic acid, and S-(PGA1)-glutathione, a substrate not shown to be transported by organic anion transporters previously. Transport is inhibited only inefficiently by compounds known to block MRP1. We also show that cMOAT causes transport of the anticancer drug vinblastine to the apical side of a cell monolayer. We conclude that cMOAT is a 5'-adenosine triphosphate binding cassette transporter that potentially might be involved in drug resistance in mammalian cells.

Authors

R Evers, M Kool, L van Deemter, H Janssen, J Calafat, L C Oomen, C C Paulusma, R P Oude Elferink, F Baas, A H Schinkel, P Borst

×

Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome.
A Lomri, J Lemonnier, M Hott, N de Parseval, E Lajeunie, A Munnich, D Renier, P J Marie
A Lomri, J Lemonnier, M Hott, N de Parseval, E Lajeunie, A Munnich, D Renier, P J Marie
View: Text | PDF
Research Article

Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome.

  • Text
  • PDF
Abstract

Apert syndrome, associated with fibroblast growth factor receptor (FGFR) 2 mutations, is characterized by premature fusion of cranial sutures. We analyzed proliferation and differentiation of calvaria cells derived from Apert infants and fetuses with FGFR-2 mutations. Histological analysis revealed premature ossification, increased extent of subperiosteal bone formation, and alkaline phosphatase- positive preosteoblastic cells in Apert fetal calvaria compared with age-matched controls. Preosteoblastic calvaria cells isolated from Apert infants and fetuses showed normal cell growth in basal conditions or in response to exogenous FGF-2. In contrast, the number of alkaline phosphatase- positive calvaria cells was fourfold higher than normal in mutant fetal calvaria cells with the most frequent Apert FGFR-2 mutation (Ser252Trp), suggesting increased maturation rate of cells in the osteoblastic lineage. Biochemical and Northern blot analyses also showed that the expression of alkaline phosphatase and type 1 collagen were 2-10-fold greater than normal in mutant fetal calvaria cells. The in vitro production of mineralized matrix formed by immortalized mutant fetal calvaria cells cultured in aggregates was also increased markedly compared with control immortalized fetal calvaria cells. The results show that Apert FGFR-2 mutations lead to an increase in the number of precursor cells that enter the osteogenic pathway, leading ultimately to increased subperiosteal bone matrix formation and premature calvaria ossification during fetal development, which establishes a connection between the altered genotype and cellular phenotype in Apert syndromic craniosynostosis.

Authors

A Lomri, J Lemonnier, M Hott, N de Parseval, E Lajeunie, A Munnich, D Renier, P J Marie

×

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts