Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B.
C Wahl, … , G Adler, R M Schmid
C Wahl, … , G Adler, R M Schmid
Published March 1, 1998
Citation Information: J Clin Invest. 1998;101(5):1163-1174. https://doi.org/10.1172/JCI992.
View: Text | PDF
Research Article

Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B.

  • Text
  • PDF
Abstract

Transcription factors of the NF-kappaB/Rel family are critical for inducible expression of multiple genes involved in inflammatory responses. Sulfasalazine and its salicylate moiety 5-aminosalicylic acid are among the most effective agents for treating inflammatory bowel disease and rheumatoid arthritis. However, the mode of action of these drugs remains unclear. Here we provide evidence that the transcription factor NF-kappaB is a target of sulfasalazine-mediated immunosuppression. Treatment of SW620 colon cells with sulfasalazine inhibited TNFalpha-, LPS-, or phorbol ester- induced NF-kappaB activation. NF-kappaB-dependent transcription was inhibited by sulfasalazine at micro- to millimolar concentrations. In contrast, 5-aminosalicylic acid or sulfapyridine did not block NF-kappaB activation at all doses tested. TNFalpha-induced nuclear translocation of NF-kappaB was prevented by sulfasalazine through inhibition of IkappaBalpha degradation. When blocking proteasome-mediated degradation of IkappaBalpha, we could demonstrate that sulfasalazine interfered with IkappaBalpha phosphorylation, suggesting a direct effect on an IkappaBalpha kinase or on an upstream signal. Inhibition of NF-kappaB activation seems to be specific since other DNA-binding activities such as AP1 were not affected. These results demonstrate that sulfasalazine is a potent and specific inhibitor of NF-kappaB activation, and thus may explain some of the known biological properties of sulfasalazine.

Authors

C Wahl, S Liptay, G Adler, R M Schmid

×

Usage data is cumulative from June 2021 through June 2022.

Usage JCI PMC
Text version 841 337
PDF 157 121
Citation downloads 12 0
Totals 1,010 458
Total Views 1,468
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts